VECTORS and MATRICES

Rotations

Let $\operatorname{Rot}_{\varphi}$ denote the rotation of vectors in the plane \mathbb{R}^{2} by the angle φ counterclockwise. The rotation $\operatorname{Rot}_{\varphi}$ is given by the matrix

$$
\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)
$$

i.e. if a vector v is given by $v=(x, y)$, then rotating v by the angle φ counterclockwise we obtain

$$
\operatorname{Rot}_{\varphi}(v)=\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right) \cdot\binom{x}{y}=\binom{x \cos \varphi-y \sin \varphi}{x \sin \varphi+y \cos \varphi} .
$$

In particular, the rotation $\operatorname{Rot}_{90^{\circ}}$ of vectors in the plane \mathbb{R}^{2} by the angle 90° counter-clockwise is given by the matrix

$$
\left(\begin{array}{cc}
\cos \left(90^{\circ}\right) & -\sin \left(90^{\circ}\right) \\
\sin \left(90^{\circ}\right) & \cos \left(90^{\circ}\right)
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),
$$

i.e. if a vector v is given by $v=(x, y)$, then rotating v by the angle 90° counterclockwise we obtain

$$
\operatorname{Rot}_{90^{\circ}}(v)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \cdot\binom{x}{y}=\binom{-y}{x}
$$

Remember: If a vector v has coordinates $v=(x, y)$, then rotating v by the angle 90° counter-clockwise we obtain $\operatorname{Rot}_{90^{\circ}}(v)=(-y, x)$.

Dot-Product

Definition: The dot product of two vectors $v=\left(v_{1}, \ldots, v_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right) \in$ \mathbb{R}^{n} is given by

$$
v \bullet w=v_{1} w_{1}+\cdots+v_{n} w_{n}
$$

The geometrical meaning of the dot-product:

$$
v \bullet w=|v| \cdot|w| \cdot \cos \angle(v, w)
$$

where $|v|$ resp. $|w|$ is the length of the vector v resp. w and $\angle(v, w)$ is the angle between the vectors v and w.

Properties of the dot-product: For vectors $a, b, a_{1}, a_{2}, b_{1}, b_{2}$ and a real number λ :

1) $a \bullet b=b \bullet a$.
2) $\left(a_{1}+a_{2}\right) \bullet b=a_{1} \bullet b+a_{2} \bullet b, a \bullet\left(b_{1}+b_{2}\right)=a \bullet b_{1}+a \bullet b_{2}$.
3) $(\lambda a) \bullet b=\lambda(a \bullet b), a \bullet(\lambda b)=\lambda(a \bullet b)$.
4) $|a \bullet b|=|a| \cdot|b| \cdot \cos \theta$, where θ is the angle between a and b.
5) $a \bullet b=0 \Longleftrightarrow \angle(a, b)=\pi / 2$ or $a=0$ or $b=0$.
6) $a \bullet b>0$ for $\angle(a, b) \in[0, \pi / 2)$.
7) $a \bullet b<0$ for $\angle(a, b) \in(\pi / 2, \pi]$.
8) $a \bullet a=|a|^{2}$.

Remember: For vectors $a, b \neq 0$ we have $a \bullet b=0 \Longleftrightarrow a \perp b$.

Remember: $a \bullet a=|a|^{2}$.

Differentiation of the dot-product: Let $a, b: I \rightarrow \mathbb{R}^{2}$ or $a, b: I \rightarrow \mathbb{R}^{3}$, where I is an interval in \mathbb{R}, then

$$
(a \bullet b)^{\prime}=a \bullet b^{\prime}+a^{\prime} \bullet b,
$$

i.e. for any $t \in I$

$$
(a \bullet b)^{\prime}(t)=a(t) \bullet b^{\prime}(t)+a^{\prime}(t) \bullet b(t)
$$

Determinant

Notation: For vectors $v=\left(v_{1}, v_{2}\right)$ and $w=\left(w_{1}, w_{2}\right)$ in \mathbb{R}^{2} we write

$$
|v w|=\left|\begin{array}{ll}
v_{1} & w_{1} \\
v_{2} & w_{2}
\end{array}\right|=\operatorname{det}\left(\begin{array}{ll}
v_{1} & w_{1} \\
v_{2} & w_{2}
\end{array}\right)=v_{1} w_{2}-v_{2} w_{1}
$$

The geometrical meaning of the determinant:

$$
|v w|=|v| \cdot|w| \cdot \sin \angle(v, w)
$$

where $|v|$ resp. $|w|$ is the length of the vector v resp. w and $\angle(v, w)$ is the angle between the vectors v and w with sign of the angle depending on the orientation of the vectors.
$|v w|$ measures the area of the parallelogram spanned by the vectors v and w.

Properties of the determinant: For vectors $a, b, a_{1}, a_{2}, b_{1}, b_{2}$ and a real number λ :

1) $|a b|=-|b a|$.
2) $\left|a_{1}+a_{2} b\right|=\left|a_{1} b\right|+\left|a_{2} b\right|,\left|a b_{1}+b_{2}\right|=\left|a b_{1}\right|+\left|a b_{2}\right|$.
3) $|\lambda \cdot a b|=\lambda \cdot|a b|,|a \lambda \cdot b|=\lambda \cdot|a b|$.

Remark: Connection with the vector product: For $v=\left(v_{1}, v_{2}\right), w=\left(w_{1}, w_{2}\right)$:

$$
\left(v_{1}, v_{2}, 0\right) \times\left(w_{1}, w_{2}, 0\right)=(0,0,|v w|) .
$$

Vector Cross Product

Definition: The vector cross product of vectors $v=\left(v_{1}, v_{2}, v_{3}\right)$ and $w=$ $\left(w_{1}, w_{2}, w_{3}\right)$ in \mathbb{R}^{3} is given by

$$
v \times w=\left(\left|\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right|,-\left|\begin{array}{cc}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right|,\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right|\right)=\left(v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-v_{1} w_{3}, v_{1} w_{2}-v_{2} w_{1}\right)
$$

Remark: If you have good skills in working with determinants, you might find the following method for working out vector products useful: If $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0)$, $\mathbf{k}=(0,0,1)$ denote the three standard vectors, we can write the vector product as

$$
\begin{aligned}
v \times w & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right| \\
& =\left(\left|\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right|,-\left|\begin{array}{cc}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right|,\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right|\right) \\
& =\left(v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-v_{1} w_{3}, v_{1} w_{2}-v_{2} w_{1}\right) .
\end{aligned}
$$

Remark: The cross product is also known as the wedge product and written $v \wedge w$.

Properties of the vector product: For vectors $a, b, c, a_{1}, a_{2}, b_{1}, b_{2}$ and a real number λ :

1) The vector product $a \times b$ is perpendicular to the vectors a and b.
2) $a \times b=-b \times a$.
3) $\left(a_{1}+a_{2}\right) \times b=a_{1} \times b+a_{2} \times b, a \times\left(b_{1}+b_{2}\right)=a \times b_{1}+a \times b_{2}$.
4) $(\lambda a) \times b=\lambda(a \times b), a \times(\lambda b)=\lambda(a \times b)$.
5) $|a \times b|^{2}=|a|^{2}|b|^{2}-(a \bullet b)^{2}$.
6) $(a \times b) \times c=(a \bullet c) b-(b \bullet c) a$.
7) $|a \times b|=|a| \cdot|b| \cdot \sin \theta$, where θ is the angle $(0 \leqslant \theta<\pi)$ between a and b.

Remember: $a \times b \perp a, a \times b \perp b$.
Remark: When working out the vector product of two vectors, it is always a good idea to check (using the dot-product) that your answer is perpendicular to each of the vectors you started with. That is, having worked out $a \times b$, check that $(a \times b) \bullet a=0$ and $(a \times b) \bullet b=0$.

Differentiation of the vector product: Let $a, b: I \rightarrow \mathbb{R}^{3}$, where I is an interval in \mathbb{R}, then

$$
(a \times b)^{\prime}=a \times b^{\prime}+a^{\prime} \times b,
$$

i.e. for any $t \in I$

$$
(a \times b)^{\prime}(t)=a(t) \times b^{\prime}(t)+a^{\prime}(t) \times b(t)
$$

