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 Consider a situation when data elements are 
inserted in a BST in sorted order: 1, 2, 3, … 

 BST becomes a  

 degenerate tree. 

 Search operation 

 FindKey takes O(n), 

 which is as inefficient as in a list. 
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 It is possible that after a number of insert and 
delete operations a binary tree may become 
imbalanced and increase in height. 

 Can we insert and delete elements from BST 
so that its height is guaranteed to be O(log 
n)?  Yes, AVL Tree ensures this. 

 Named after its two inventors: Adelson-Velski 
and Landis. 
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 Height-balanced tree: A binary tree is a 
height-balanced-p-tree if for each node in 
the tree, the difference in height of its two 
subtrees is at the most p. 

 AVL tree is a BST that is height-balanced-1-
tree. 

5 



6 



7 

1 

2 

3 

4 

5 

Inserting 1, 2, 3, 4 and 5 2 

3 

4 1 

5 

BST after 

insertions 

AVL Tree 

after insertions 



Elements: The elements are nodes, each node 
contains the following data type: Type  

Structure: Same as for the BST; in addition the 
height difference of the two subtrees of any 
node is at the most one. 

Domain: the number of nodes in a AVL is 
bounded; type AVLTree 
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Operations:  

1. Method FindKey (int tkey, boolean found).  

2. Method Insert (int k, Type e, boolean inserted). 

3. Method Remove_Key (int tkey, boolean deleted) 

4. Method Update(Type e) 
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5. Method Traverse (Order ord) 

6. Method DeleteSub ( ) 

7. Method Retrieve (Type e) 

8. Method Empty (boolean empty). 

9. Method Full (boolean full) 
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Representation: 
public class <Type> AVLNode  // AVL Tree Node { 

 private: 

  int key 

  Type data; 

  Balance bal; //Balance is enum +1, 0, -1 

  AVLNode<Type> *left, *right; 

 public AVLNode(int, Type); // constructors 

}; 
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 Step 1: A node is first inserted into the tree 
as in a BST. 

 There is always a unique path from the root 
to the new node called the search path. 

 Step 2: Nodes in the search path are 
examined to see if there is a pivot node. 
Three cases arise. 

 A pivot node is a node closest to the new 
node on the search path, whose balance is 
either –1 or +1. 
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 Case 1: There is no pivot node. No 
adjustment required. 

 Case 2: The pivot node exists and the subtree 
to which the new node is added has smaller 
height. No adjustment required. 

 Case 3: The pivot node exists and the subtree 
to which the new node is added has the 
larger height. Adjustment required. 
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 When after an insertion or a deletion an AVL 
tree becomes imbalanced, adjustments must 
be made to the tree to change it back into an 
AVL tree. 

 These adjustments are called rotations. 
 Rotations are either single or double 

rotations. 
 For Case 3 there are 4 sub-cases (2+2) 
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 Step 1: Delete the node as in BSTs. Leaf or 
node with one child, will always be deleted. 

 Step 2: For each node on the path from the 
root to deleted node, check  if the node has 
become imbalanced; if yes perform rotation 
operations otherwise update balance factors 
and exit.  Three cases can arise for each 
node p, in the path. 
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 Step 2 (contd.): Case 1: Node p has balance 
factor 0. No rotation needed. 

 Case 2: Node p has balance factor of +1 or 
–1 and a node was deleted from the taller 
sub-trees. No rotation needed. 

 Case 3: Node p has balance factor of +1 or 
–1 and a node was deleted from the shorter 
sub-trees. Rotation needed. Eight sub-
cases. (4 + 4) 
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 Sub-Case 5: mirror image of Sub-Case 1. 

 Sub-Case 6: mirror image of Sub-Case 2. 

 Sub-Case 7: mirror image of Sub-Case 3. 

 Sub-Case 8: mirror image of Sub-Case 4. 
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