
1

 Consider a situation when data elements are
inserted in a BST in sorted order: 1, 2, 3, …

 BST becomes a

 degenerate tree.

 Search operation

 FindKey takes O(n),

 which is as inefficient as in a list.

2

1

2

3

n

 It is possible that after a number of insert and
delete operations a binary tree may become
imbalanced and increase in height.

 Can we insert and delete elements from BST
so that its height is guaranteed to be O(log
n)? Yes, AVL Tree ensures this.

 Named after its two inventors: Adelson-Velski
and Landis.

3

4

70

60

90

30

20

110

80

70

60

90 30 10

20

110

An Imbalanced

Tree

A Balanced Tree

 Height-balanced tree: A binary tree is a
height-balanced-p-tree if for each node in
the tree, the difference in height of its two
subtrees is at the most p.

 AVL tree is a BST that is height-balanced-1-
tree.

5

6

7

1

2

3

4

5

Inserting 1, 2, 3, 4 and 5 2

3

4 1

5

BST after

insertions

AVL Tree

after insertions

Elements: The elements are nodes, each node
contains the following data type: Type

Structure: Same as for the BST; in addition the
height difference of the two subtrees of any
node is at the most one.

Domain: the number of nodes in a AVL is
bounded; type AVLTree

8

Operations:

1. Method FindKey (int tkey, boolean found).

2. Method Insert (int k, Type e, boolean inserted).

3. Method Remove_Key (int tkey, boolean deleted)

4. Method Update(Type e)

9

5. Method Traverse (Order ord)

6. Method DeleteSub ()

7. Method Retrieve (Type e)

8. Method Empty (boolean empty).

9. Method Full (boolean full)

10

Representation:
public class <Type> AVLNode // AVL Tree Node {

 private:

 int key

 Type data;

 Balance bal; //Balance is enum +1, 0, -1

 AVLNode<Type> *left, *right;

 public AVLNode(int, Type); // constructors

};

11

 Step 1: A node is first inserted into the tree
as in a BST.

 There is always a unique path from the root
to the new node called the search path.

 Step 2: Nodes in the search path are
examined to see if there is a pivot node.
Three cases arise.

 A pivot node is a node closest to the new
node on the search path, whose balance is
either –1 or +1.

12

 Case 1: There is no pivot node. No
adjustment required.

 Case 2: The pivot node exists and the subtree
to which the new node is added has smaller
height. No adjustment required.

 Case 3: The pivot node exists and the subtree
to which the new node is added has the
larger height. Adjustment required.

13

14

20

30 10

0

0
0

Insert 40 +1
20

30 10
+1

0

40

0

30

30

50 20
0

-1

60

0

40 10

0

0 0

30

50 20
+1

-1

60

-1

40 10

+1

0 0

55

0

Insert 55

No Pivot node

15

+1
20

30 10
+1

0

40

0

0
20

30 10
+1

-1

40

0

30

5

0

+1

70

30

50 20

+1
-1

60

+1

40 10

0 0

0

70

30

50 20
0

-1

60

+1

40 10

0 +1

45

0
0

+1

Insert 5

Pivot Node

Pivot Node

Insert 45

New node

added to the

shorter subtrees

of the Pivot.

16

5

-1

10

60

80 40

+1
-1

100

0

50 20

0

30

0 0

0

Pivot Node

Insert 5

AVL Tree is no

more an AVL Tree

after insertion.

 When after an insertion or a deletion an AVL
tree becomes imbalanced, adjustments must
be made to the tree to change it back into an
AVL tree.

 These adjustments are called rotations.
 Rotations are either single or double

rotations.
 For Case 3 there are 4 sub-cases (2+2)

17

18

Remainder of

the tree

A

B

T3

T1

New Node

T2

Pivot

Remainder of

the tree

B

A

T3

T1

New Node

T2

Single Rotation

h h

h

19

Remainder of

the tree

B

A

T3

T1

New Node

T2

Single Rotation

h

h h

Remainder of

the tree

A

B

T3

T1

New Node

T2

Pivot

20

One of these

is a new node

Remainder of

the tree

A

B

T4

T1

Pivot

C

T2 T3

h

h-1 h-1

h

h

Remainder of

the tree

A

C

T4 T1

Pivot

B

T2 T3
h-1 h-1 h

Double Rotation

21

One of these

is a new node

Remainder of

the tree

A

B

T4

T1

Pivot

C

T2 T3

h

h-1 h-1

h

h

Remainder of

the tree

A

C

T4 T1

Pivot

B

T2 T3
h-1 h-1 h

Double Rotation

AVL Trees 22

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0
T2

T3

x

y

z

2

3

4

5

6

7

1

88

44

17

78 32 50

48

62
2

4

1

1

2 2

3

1

54

1

T 0 T 1

T 2

T 3

x

y z

unbalanced...

...balanced

1

2

3

4

5

6

7

T 1

 Step 1: Delete the node as in BSTs. Leaf or
node with one child, will always be deleted.

 Step 2: For each node on the path from the
root to deleted node, check if the node has
become imbalanced; if yes perform rotation
operations otherwise update balance factors
and exit. Three cases can arise for each
node p, in the path.

23

 Step 2 (contd.): Case 1: Node p has balance
factor 0. No rotation needed.

 Case 2: Node p has balance factor of +1 or
–1 and a node was deleted from the taller
sub-trees. No rotation needed.

 Case 3: Node p has balance factor of +1 or
–1 and a node was deleted from the shorter
sub-trees. Rotation needed. Eight sub-
cases. (4 + 4)

24

25

Remainder of

the tree

h h-1

Node to be

deleted.

0 p

Remainder of

the tree

h h-1

+1 p

26

Remainder of

the tree

h h

Node to be

deleted.

-1 p

Remainder of

the tree

h h

0 p

27

Single Rotation

h-1

h-1 h

Remainder of

the tree

C

B

T1

T3

Deleted Node

T2

p

+1

+1

Remainder of

the tree

B

C

T1

T3

T2

0

0

h

h-1 h-1

28

Single Rotation

h-1

h h

Remainder of

the tree

C

B

T1

T3

Deleted Node

T2

p

0

+1

Remainder of

the tree

B

C

T1

T3

T2

-1

+1

h

h h-1

29

Double Rotation

Deleted

Node

Remainder of

the tree

A

B

T1

T4

p

C

T3 T2

h-1

h-2 h-1

h-1

-1

-1

+1

h-1

Remainder of

the tree

A

C

T1 T4

B

T3 T2

h-2 h-1 h-1

0

0 +1

30

Double Rotation

Deleted

Node

Remainder of

the tree

A

B

T1

T4

p

C

T3 T2

h-1

h-1 h-2

h-1

-1

-1

+1

h-1

Remainder of

the tree

A

C

T1 T4

B

T3 T2

h-1 h-2 h-1

-1

-1 0

 Sub-Case 5: mirror image of Sub-Case 1.

 Sub-Case 6: mirror image of Sub-Case 2.

 Sub-Case 7: mirror image of Sub-Case 3.

 Sub-Case 8: mirror image of Sub-Case 4.

31

32

p

m

n j c

e

s

h d b

a g

f

i

k
u

o
r

t l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

-1

+1

+1

+1

0

+1

0
-1

0

Delete p

33

o

m

n j c

e

s

h d b

a g

f

i

k
u r

t l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

-1

+1

+2

0

+1

0
-1

0

Delete p

Sub-Case 1

Single Rotation

34

-2

s

m

o j c

e

u

h d b

a g

f

i

k r t n

l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

+1

0

0

-1

0

0 0

Sub Case 8

Double Rotation

35

0

m

j

k h c

e

s

g d b

a f

i l o u

0

-1

-1

0

0

-1

-1

0

0

+1

+1

0

0

0

0

After

Double Rotation

r n t
0

0

-1

