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 Consider a situation when data elements are 
inserted in a BST in sorted order: 1, 2, 3, … 

 BST becomes a  

 degenerate tree. 

 Search operation 

 FindKey takes O(n), 

 which is as inefficient as in a list. 
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 It is possible that after a number of insert and 
delete operations a binary tree may become 
imbalanced and increase in height. 

 Can we insert and delete elements from BST 
so that its height is guaranteed to be O(log 
n)?  Yes, AVL Tree ensures this. 

 Named after its two inventors: Adelson-Velski 
and Landis. 
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 Height-balanced tree: A binary tree is a 
height-balanced-p-tree if for each node in 
the tree, the difference in height of its two 
subtrees is at the most p. 

 AVL tree is a BST that is height-balanced-1-
tree. 
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Elements: The elements are nodes, each node 
contains the following data type: Type  

Structure: Same as for the BST; in addition the 
height difference of the two subtrees of any 
node is at the most one. 

Domain: the number of nodes in a AVL is 
bounded; type AVLTree 
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Operations:  

1. Method FindKey (int tkey, boolean found).  

2. Method Insert (int k, Type e, boolean inserted). 

3. Method Remove_Key (int tkey, boolean deleted) 

4. Method Update(Type e) 
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5. Method Traverse (Order ord) 

6. Method DeleteSub ( ) 

7. Method Retrieve (Type e) 

8. Method Empty (boolean empty). 

9. Method Full (boolean full) 
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Representation: 
public class <Type> AVLNode  // AVL Tree Node { 

 private: 

  int key 

  Type data; 

  Balance bal; //Balance is enum +1, 0, -1 

  AVLNode<Type> *left, *right; 

 public AVLNode(int, Type); // constructors 

}; 
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 Step 1: A node is first inserted into the tree 
as in a BST. 

 There is always a unique path from the root 
to the new node called the search path. 

 Step 2: Nodes in the search path are 
examined to see if there is a pivot node. 
Three cases arise. 

 A pivot node is a node closest to the new 
node on the search path, whose balance is 
either –1 or +1. 
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 Case 1: There is no pivot node. No 
adjustment required. 

 Case 2: The pivot node exists and the subtree 
to which the new node is added has smaller 
height. No adjustment required. 

 Case 3: The pivot node exists and the subtree 
to which the new node is added has the 
larger height. Adjustment required. 
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 When after an insertion or a deletion an AVL 
tree becomes imbalanced, adjustments must 
be made to the tree to change it back into an 
AVL tree. 

 These adjustments are called rotations. 
 Rotations are either single or double 

rotations. 
 For Case 3 there are 4 sub-cases (2+2) 
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 Step 1: Delete the node as in BSTs. Leaf or 
node with one child, will always be deleted. 

 Step 2: For each node on the path from the 
root to deleted node, check  if the node has 
become imbalanced; if yes perform rotation 
operations otherwise update balance factors 
and exit.  Three cases can arise for each 
node p, in the path. 
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 Step 2 (contd.): Case 1: Node p has balance 
factor 0. No rotation needed. 

 Case 2: Node p has balance factor of +1 or 
–1 and a node was deleted from the taller 
sub-trees. No rotation needed. 

 Case 3: Node p has balance factor of +1 or 
–1 and a node was deleted from the shorter 
sub-trees. Rotation needed. Eight sub-
cases. (4 + 4) 
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 Sub-Case 5: mirror image of Sub-Case 1. 

 Sub-Case 6: mirror image of Sub-Case 2. 

 Sub-Case 7: mirror image of Sub-Case 3. 

 Sub-Case 8: mirror image of Sub-Case 4. 
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