
1

 Consider a situation when data elements are
inserted in a BST in sorted order: 1, 2, 3, …

 BST becomes a

 degenerate tree.

 Search operation

 FindKey takes O(n),

 which is as inefficient as in a list.

2

1

2

3

n

 It is possible that after a number of insert and
delete operations a binary tree may become
imbalanced and increase in height.

 Can we insert and delete elements from BST
so that its height is guaranteed to be O(log
n)?  Yes, AVL Tree ensures this.

 Named after its two inventors: Adelson-Velski
and Landis.

3

4

70

60

90

30

20

110

80

70

60

90 30 10

20

110

An Imbalanced

Tree

A Balanced Tree

 Height-balanced tree: A binary tree is a
height-balanced-p-tree if for each node in
the tree, the difference in height of its two
subtrees is at the most p.

 AVL tree is a BST that is height-balanced-1-
tree.

5

6

7

1

2

3

4

5

Inserting 1, 2, 3, 4 and 5 2

3

4 1

5

BST after

insertions

AVL Tree

after insertions

Elements: The elements are nodes, each node
contains the following data type: Type

Structure: Same as for the BST; in addition the
height difference of the two subtrees of any
node is at the most one.

Domain: the number of nodes in a AVL is
bounded; type AVLTree

8

Operations:

1. Method FindKey (int tkey, boolean found).

2. Method Insert (int k, Type e, boolean inserted).

3. Method Remove_Key (int tkey, boolean deleted)

4. Method Update(Type e)

9

5. Method Traverse (Order ord)

6. Method DeleteSub ()

7. Method Retrieve (Type e)

8. Method Empty (boolean empty).

9. Method Full (boolean full)

10

Representation:
public class <Type> AVLNode // AVL Tree Node {

 private:

 int key

 Type data;

 Balance bal; //Balance is enum +1, 0, -1

 AVLNode<Type> *left, *right;

 public AVLNode(int, Type); // constructors

};

11

 Step 1: A node is first inserted into the tree
as in a BST.

 There is always a unique path from the root
to the new node called the search path.

 Step 2: Nodes in the search path are
examined to see if there is a pivot node.
Three cases arise.

 A pivot node is a node closest to the new
node on the search path, whose balance is
either –1 or +1.

12

 Case 1: There is no pivot node. No
adjustment required.

 Case 2: The pivot node exists and the subtree
to which the new node is added has smaller
height. No adjustment required.

 Case 3: The pivot node exists and the subtree
to which the new node is added has the
larger height. Adjustment required.

13

14

20

30 10

0

0
0

Insert 40 +1
20

30 10
+1

0

40

0

30

30

50 20
0

-1

60

0

40 10

0

0 0

30

50 20
+1

-1

60

-1

40 10

+1

0 0

55

0

Insert 55

No Pivot node

15

+1
20

30 10
+1

0

40

0

0
20

30 10
+1

-1

40

0

30

5

0

+1

70

30

50 20

+1
-1

60

+1

40 10

0 0

0

70

30

50 20
0

-1

60

+1

40 10

0 +1

45

0
0

+1

Insert 5

Pivot Node

Pivot Node

Insert 45

New node

added to the

shorter subtrees

of the Pivot.

16

5

-1

10

60

80 40

+1
-1

100

0

50 20

0

30

0 0

0

Pivot Node

Insert 5

AVL Tree is no

more an AVL Tree

after insertion.

 When after an insertion or a deletion an AVL
tree becomes imbalanced, adjustments must
be made to the tree to change it back into an
AVL tree.

 These adjustments are called rotations.
 Rotations are either single or double

rotations.
 For Case 3 there are 4 sub-cases (2+2)

17

18

Remainder of

the tree

A

B

T3

T1

New Node

T2

Pivot

Remainder of

the tree

B

A

T3

T1

New Node

T2

Single Rotation

h h

h

19

Remainder of

the tree

B

A

T3

T1

New Node

T2

Single Rotation

h

h h

Remainder of

the tree

A

B

T3

T1

New Node

T2

Pivot

20

One of these

is a new node

Remainder of

the tree

A

B

T4

T1

Pivot

C

T2 T3

h

h-1 h-1

h

h

Remainder of

the tree

A

C

T4 T1

Pivot

B

T2 T3
h-1 h-1 h

Double Rotation

21

One of these

is a new node

Remainder of

the tree

A

B

T4

T1

Pivot

C

T2 T3

h

h-1 h-1

h

h

Remainder of

the tree

A

C

T4 T1

Pivot

B

T2 T3
h-1 h-1 h

Double Rotation

AVL Trees 22

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0
T2

T3

x

y

z

2

3

4

5

6

7

1

88

44

17

78 32 50

48

62
2

4

1

1

2 2

3

1

54

1

T 0 T 1

T 2

T 3

x

y z

unbalanced...

...balanced

1

2

3

4

5

6

7

T 1

 Step 1: Delete the node as in BSTs. Leaf or
node with one child, will always be deleted.

 Step 2: For each node on the path from the
root to deleted node, check if the node has
become imbalanced; if yes perform rotation
operations otherwise update balance factors
and exit.  Three cases can arise for each
node p, in the path.

23

 Step 2 (contd.): Case 1: Node p has balance
factor 0. No rotation needed.

 Case 2: Node p has balance factor of +1 or
–1 and a node was deleted from the taller
sub-trees. No rotation needed.

 Case 3: Node p has balance factor of +1 or
–1 and a node was deleted from the shorter
sub-trees. Rotation needed. Eight sub-
cases. (4 + 4)

24

25

Remainder of

the tree

h h-1

Node to be

deleted.

0 p

Remainder of

the tree

h h-1

+1 p

26

Remainder of

the tree

h h

Node to be

deleted.

-1 p

Remainder of

the tree

h h

0 p

27

Single Rotation

h-1

h-1 h

Remainder of

the tree

C

B

T1

T3

Deleted Node

T2

p

+1

+1

Remainder of

the tree

B

C

T1

T3

T2

0

0

h

h-1 h-1

28

Single Rotation

h-1

h h

Remainder of

the tree

C

B

T1

T3

Deleted Node

T2

p

0

+1

Remainder of

the tree

B

C

T1

T3

T2

-1

+1

h

h h-1

29

Double Rotation

Deleted

Node

Remainder of

the tree

A

B

T1

T4

p

C

T3 T2

h-1

h-2 h-1

h-1

-1

-1

+1

h-1

Remainder of

the tree

A

C

T1 T4

B

T3 T2

h-2 h-1 h-1

0

0 +1

30

Double Rotation

Deleted

Node

Remainder of

the tree

A

B

T1

T4

p

C

T3 T2

h-1

h-1 h-2

h-1

-1

-1

+1

h-1

Remainder of

the tree

A

C

T1 T4

B

T3 T2

h-1 h-2 h-1

-1

-1 0

 Sub-Case 5: mirror image of Sub-Case 1.

 Sub-Case 6: mirror image of Sub-Case 2.

 Sub-Case 7: mirror image of Sub-Case 3.

 Sub-Case 8: mirror image of Sub-Case 4.

31

32

p

m

n j c

e

s

h d b

a g

f

i

k
u

o
r

t l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

-1

+1

+1

+1

0

+1

0
-1

0

Delete p

33

o

m

n j c

e

s

h d b

a g

f

i

k
u r

t l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

-1

+1

+2

0

+1

0
-1

0

Delete p

Sub-Case 1

Single Rotation

34

-2

s

m

o j c

e

u

h d b

a g

f

i

k r t n

l

+1

-1

-1

0

0

-1

-1

-1

0
0 0

+1

0

0

-1

0

0 0

Sub Case 8

Double Rotation

35

0

m

j

k h c

e

s

g d b

a f

i l o u

0

-1

-1

0

0

-1

-1

0

0

+1

+1

0

0

0

0

After

Double Rotation

r n t
0

0

-1

