AVL Trees



AVL Trees

» Consider a situation when data elements are
inserted in a BST in sorted order: 1, 2, 3, ...

» BST becomes a
degenerate tree.
» Search operation
FindKey takes O(n),
which is as inefficient as in a list.




AVL Trees

» It is possible that after a number of insert and
delete operations a binary tree may become
imbalanced and increase in height.

» Can we insert and delete elements from BST
so that its height is guaranteed to be O(log
n)? = Yes, AVL Tree ensures this.

» Named after its two inventors: Adelson-Velski
and Landis.




Imbalanced Tree




AVL Tree: Definition

» Height-balanced tree: A binary tree is a
height-balanced-p-tree if for each node in
the tree, the difference in height of its two
subtrees is at the most p.

» AVL tree is a BST that is height-balanced-1-
tree.




AVL Trees: Exar

e




AVL Trees

‘ Inserting
A\

BST
Inser

N

N A\Y, a
‘ after insertions




ADT AVL Tree

Elements: The elements are nodes, each node
contains the following data type: Type

Structure: Same as for the BST; in addition the
height difference of the two subtrees of any
node is at the most one.

Domain: the number of nodes in a AVL is
bounded; type AVLTree




ADT AVL Tree

Operations:

1. Method FindKey (int tkey, boolean found).

2. Method Insert (int k, Type e, boolean inserted).
3. Method Remove_Key (int tkey, boolean deleted)
4. Method Update(Type e)




ADT AVL Tree

5.
6.
7.
8.
9.

Method Traverse (Order.ord)
Method DeleteSub ()

Method Retrieve (Type e)
Method Empty (boolean empty).
Method Full (boolean full)

10



ADT AVL Tree

Representation:
public class <Type> AVINode // AVL Tree Node {

private:
int key
Type data;
Balance bal; //Balance is enum +1, 0, -1
AVLNode<Type> *left, *right;
public AVLNode (int, Type): // constructors

I

11



AVL Tree: Insert

» Step 1: A node is first inserted into the tree
as in a BST.

» There is always a unique path from the root
to the new node called the search path.

» Step 2: Nodes in the search path are
examined to see if there is a pivot node.
Three cases arise.

» A pivot node is a node closest to the new
node on the search path, whose balance is
either -1 or +1.

12



AVL Tree: Insert

» Case 1: There is no pivot node. No
adjustment required.

» Case 2: The pivot node exists and the subtree
to which the new node is added has smaller
height. No adjustment required.

» Case 3: The pivot node exists and the subtree
to which the new node is added has the
larger height. Adjustment required.

13



Insert: Case

/'\0 Insert 40
¢ 0

No Pivot node
0
Insert
o o S




Insert: CaSEms

Pivot Node
E— -

® @

+1
y
0
@

_1 / \ +1

‘ Insert 45

o6 o6
e Pivot Node 0

BES




Insert: Cas

Pivot Node —>




Insert: Case 3

» When after an insertion or a deletion an AVL
tree becomes imbalanced, adjustments must

be made to the tree to change it back into an
AVL tree.

» These adjustments are called rotations.

» Rotations are either single or double
rotations.

» For Case 3 there are 4 sub-cases (2+2)

17



Insert: Cases (S

Pivot

B -
-

s
A ®

New Node




)

Insert: Case 3

| .

New Node



J)

Insert: Case 3

h-1

One of these
iSa-new node



o~

Insert: Case 3

One of these
_isanew node



Insertion Example

44
2
17
1
32
1,7~
7 (48)
14
|
\
unbalanced... . _——
Ty
...balanced

AVL Trees 22



AVL Tree: Delete

» Step 1: Delete the node as.in BSTs. Leaf or
node with one child, will always be deleted.

» Step 2: For each node on the path from the
root to deleted node, check if the node has
become imbalanced; if yes perform rotation
operations otherwise update balance factors

and exit. = Three cases can arise for each
node p, in the path.

23



AVL Tree: Delete

» Step 2 (contd.): Case 1: Node p has balance
factor 0. No rotation needed.

Case 2: Node p has balance factor of +1 or
-1 and a node was deleted from the taller
sub-trees. No rotation needed.

Case 3: Node p has balance factor of +1 or

-1 and a node was deleted from the shorter
sub-trees. Rotation needed. Eight sub-
cases. (4 + 4)

24



Delete: Case |

= xh

Node to be
deleted.




Delete: Case 2

h xh
Node to be
deleted.



Delete: Case 3




Delete: Case 3 |

. - h
is N

R0




Delete: Case 3




Delete: Case 3




Delete: Case 3 (Other Sub-Cases)

» Su
» Su
» Su
» Su

n—-Case 5:
n—-Case 6:
n—-Case 7:

n—-Case 8:

mirror image of Su
mirror image of Su
mirror image of Su
mirror image of Su

n—-Case 1.
n—-Case 2.
n—-Case 3.

n-Case 4.

31



Deletion: Examg

+
0 0

®



Deletion: Examg

+
0 0

®



Deletion: Examg

Double Rotation

% ‘ ub Case 8
0 0




Deletion: Examg

After
Double Rotation 0




