
1

 Consider the search operation FindKey ():
find an element of a particular key value in
a binary tree.

 This operation takes O(n) time in a binary
tree.

 In a binary tree of 106 nodes 106 steps
required at least.

 In a BST this operation can be performed
very efficiently: O(log2n).

 A binary search tree of 106 nodes
log2(106) 20 steps only are required.

2

 A binary search tree is a binary tree such
that for each node, say N, the following
statements are true:

1. If L is any node in the left subtree of N, then L is
less than N.

2. If R is any node in the right subtree of N, then R
is greater than N.

3

4

91

65

73 53 14

35

93

50 33 0

40

44

56

55

58

81

80 71

87

69

 The search operation in a binary search tree
can be carried out as:

While (the target element is not found and there
is more tree to search) do

 if the target element is “less than” the current

element then search the left subtree else search
the right subtree.

5

Elements: The elements are nodes (BSTNode),
each node contains the following data type:
Type

Structure: hierarchical structure; each node
can have two children: left or right child;
there is a root node and a current node. If N
is any node in the tree, nodes in the left
subtree < N and nodes in the right subtree
> N.

Domain: the number of nodes in a BST is
bounded; type/class name is BST

6

Operations:

1. Method FindKey (int tkey, boolean found).

 results: If bst contains a node whose key value is
tkey, then that node is made the current node
and found is set to true; otherwise found is set to
false and either the tree is empty or the current
node is the node to which the node with key =
tkey would be attached as a child if it were added
to the BST.

7

2. Method Insert (int k, Type e, boolean inserted)
 requires: Full (bst) is false. input: key, e.
 results: if bst does not contain k then inserted is

set to true and node with k and e is inserted and
made the current element; otherwise inserted is
set to false and current value does not change.
output: inserted.

3. Method Remove_Key (int tkey, boolean removed)
input: tkey

 results: Node with key value tkey is removed from
the bst and removed set to true. If BST is not
empty then root is made the current. output:
removed

8

4. Method Update(Type e)
 requires: Empty(bst) is false. results:

current node’s element is replaced with e.
 These operations have the same

specification as ADT Binary Tree.
5. Method Traverse (Order ord)
6. Method DeleteSub ()
7. Method Retrieve (Type e)
8. Method Empty (boolean empty).

9

9. Method Full (boolean full)

10

public class BSTNode <T> {
 public int key;
 public T data;
 public BSTNode<T> left, right;
 /** Creates a new instance of BSTNode */
 public BSTNode(int k, T val) {
 key = k;
 data = val;
 left = right = null;
 }

11

public class BST <T> {

 BSTNode<T> root, current;

 /** Creates a new instance of BST */

 public BST() {

 root = current = null;

 }

 public boolean empty(){

 return root == null ? true: false;

 }

 public T retrieve () {

 return current.data;

 }

12

 public boolean findkey(int tkey){
 BSTNode<T> p = root,q = root;
 if (empty()) return false;
 while (p != null){ q = p;
 if (p.key == tkey){
 current = p; return true;}
 else if (tkey < p.key)
 p = p.left;
 else
 p = p.right }

 current = q; return false; }

13

 public boolean insert (int k, T val){

 BSTNode<T> p, q = current;

 if (findkey(k)){

 current = q; /* findkey() has modified current */

 return false; /* key already in the BST */ }

 p = new BSTNode<T>(k, val);

 if (empty()) {

 root = current = p; return true;}

 else {

 /* current is pointing to parent of the new key. */

 if (k < current.key)

 current.left = p;

 else

 current.right = p;

 current = p; return true;}}

14

 There are three cases:
◦ Case 1: Node to be deleted has no children.

◦ Case 2: Node to be deleted has one child.

◦ Case 3: Node to be deleted has two children.

 In all these case it is always a leaf node that
gets deleted.

15

16

70

60

90

30 10

20

110

40

50

80 100

Delete 80

70

60

90

30 10

20

110

40

50

100

17

70

60

90

30 10

20

110

40

50

80 100

70

60

90 30 10

20

40

50
80 100

Delete 110

18

70

50

90

30 10

20

110

40

80 100

70

60

90

30 10

20

110

40

50

80 100

Rightmost Node

in Left Subtree

Delete 60

 public boolean remove_key (int tkey){

 Flag removed = new Flag(false);

 BSTNode<T> p;

 p = remove_aux(tkey, root, removed);

 current = root = p;

 return removed;

 }

19

private BSTNode<T> remove_aux(int key, BSTNode<T> p, Boolean flag) {
BSTNode<T> q, child = null;

 if (p == null)

 return null;

 if (key < p.key)

 p.left = remove_aux(key, p.left, flag); //go left

 else if (key > p.key)

 p.right = remove_aux(key, p.right, flag); //go right

 else {

 flag = true;

 if (p.left != null && p.right != null){ //two children

 q = find_min(p.right);

 p.key = q.key; p.data = q.data;

 p.right = remove_aux(q.key, p.right, flag);}

20

 else {

 if (p.right == null) //one child case

 child = p.left;

 else if (p.left == null) //one child case

 child = p.right;

 return child;

 }

 }

 return p;

 }

21

 private BSTNode<T> find_min(BSTNode<T> p){

 if (p == null) return null;

 while (p.left != null){

 p = p.left;

 }

 return p;

 }

22

 public boolean update(int key, T data){

 remove_key(current.key);

 return insert(key, data);

 }

}

23

