<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
The document contains a table of chemical elements and their atomic weights, along with some calculations involving gas constants and molecular weights.

Table: Atomic Weights

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>He</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>N</td>
<td>14</td>
</tr>
<tr>
<td>O</td>
<td>16</td>
</tr>
<tr>
<td>Mg</td>
<td>24</td>
</tr>
<tr>
<td>Cl</td>
<td>35.5</td>
</tr>
<tr>
<td>K</td>
<td>39</td>
</tr>
<tr>
<td>I</td>
<td>126</td>
</tr>
</tbody>
</table>

Calculations

- **Gas Constant:**

 \[R = 0.0821 \text{ atm L mol}^{-1} \text{ K}^{-1} = 8.314 \text{ J mol}^{-1} \text{ K}^{-1} \]

- **Avogadro's Number:**

 \[N_A = 6.02 \times 10^{23} \text{ mol}^{-1} \]

- **Energy Calculations:**

 \[1.0 \text{ atm} = 760.0 \text{ mmHg} = 101325 \text{ Pa} \]

 \[R_H = 109678 \text{ cm}^{-1} \]
\[H^\circ = m = 9.33 \text{ molal} \]

\[\Delta \text{H}^\circ = \Delta U^\circ + n_T \Delta T \quad \text{(W)} \quad \Delta H^\circ = \Delta U^\circ - n_T \Delta T \quad \text{(Y)} \]

\[\Delta H^\circ = \Delta U^\circ + (RT)^{\text{Ang}} \quad \text{(p)} \]

\[\Delta H^\circ = \Delta U^\circ + \Delta n_T \times R \times T \quad \text{(W)} \quad \Delta H^\circ = \Delta U^\circ - \Delta n_T \times R \times T \quad \text{(Y)} \]

\[\Delta H^\circ = \Delta U^\circ \text{(D)} \]

\[\text{KI (p)} \quad \text{C}_2\text{H}_6 \quad \text{CH}_4 \quad \text{NH}_3 \text{ (D)} \]

\[\text{CHCl}_3 \text{ (p)} \quad \text{CH}_2\text{Cl}_2 \quad \text{CH}_3\text{Cl} \quad \text{C}_2\text{H}_4\text{Cl}_2 \text{ (D)} \]

\[2\text{Mg} + \text{O}_2 \rightarrow 2\text{MgO} \]

\[\text{a} = 4.17 \text{ atm mol}^2 \]

\[\text{b} = 0.0371 \text{ L mol}^2 \]

\[\text{KCl \% = 70.73} \text{ (Y)} \]

\[X_{\text{KCl}} = 0.5 \text{ (W)} \quad \text{KCl \% = 70.73} \quad X_{\text{KCl}} = 0.1 \text{ (D)} \]

\[m = 9.33 \text{ molal} \quad \text{X}_{\text{KCl}} = 0.5 \text{ (W)} \quad \text{KCl \% = 70.73} \quad X_{\text{KCl}} = 0.1 \text{ (D)} \]

\[\text{H}_2 \text{ (p)} \quad \text{CO} \text{ (W)} \quad \text{He} \text{ (Y)} \quad \text{CH}_4 \text{ (D)} \]

\[\text{H}_2 \text{O(g)} \rightarrow \text{H}_2\text{O(l)} \]

\[\text{K}\text{Cl} \text{ (p)} \quad \text{H}_2 \text{O} \text{ (p)} \quad \text{H}_2 \text{O} \text{ (l)} \quad \text{H}_2 \text{O} \text{ (g)} \]

\[\text{F}\text{O}_2 \text{ (p)} \quad \text{F}\text{O}_2 \text{ (l)} \quad \text{F}\text{O}_2 \text{ (g)} \]
\[SO_3(g) \rightarrow S(s) + 3/2O_2(g) \quad \Delta H^\circ = 395.2 \text{ kJ} \]
\[2SO_2(g) + O_2(g) \rightarrow 2SO_3(g) \quad \Delta H^\circ = -198.2 \text{ kJ} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[f_d \quad \text{d.r.} \quad 125 \text{ mL} \]

\[P_d = 740 \text{ torr} \]

\[P_s = 1 \text{ atm} \]

\[\Delta T = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

150 (\(\bar{\beta} \))

125 (\(\bar{\gamma} \))

140 (\(\bar{\varphi} \))

250 (\(\bar{\iota} \))

\[P_A = 0.056 \text{ atm} \]

\[P_B = 0.071 \text{ atm} \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + 3/2O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

\[\Delta H^\circ = -198.2 \text{ kJ} \]

\[\Delta H^\circ = 395.2 \text{ kJ} \]

\[\Delta H^\circ = 0.071 \text{ atm} \]

\[T_c = 13.71^\circ \text{C} \]
\[
\text{Rate} = k[A][B] \quad \text{Rate} = k[B][C] \quad \text{Rate} = k[C] \\
\text{Rate} = k[A][B][C]
\]

\[
\begin{array}{|c|c|c|c|}
\hline
[A] & [B] & [C] & \text{Rate M/s} \\
0.1 & 0.1 & 0.1 & 4.8 \times 10^{-3} \\
0.2 & 0.1 & 0.1 & 4.8 \times 10^{-3} \\
0.1 & 0.2 & 0.1 & 9.6 \times 10^{-3} \\
0.1 & 0.1 & 0.3 & 1.44 \times 10^{-2} \\
\hline
\end{array}
\]

\[
\text{A} + \text{B} + 2\text{C} \rightarrow \text{products}
\]

\[
H_2(g) + F_2(g) = 2\text{HF}(g)
\]

\[
\text{mol} L^{-1} (\text{mol} L^{-1}, \text{mol} L^{-2})
\]
الحمض

\[
\text{H}^+ (p) \quad \text{وا خ (w)} \quad H_2 \text{O}^+ (D)
\]

:

\[
\begin{align*}
\text{Kw} & = 10^{-14} \\
\text{pH} & = 6.69
\end{align*}
\]

:

\[
\begin{align*}
\text{Kw} & = 10^{-14} \\
\text{pH} & = 6.69
\end{align*}
\]

:

\[
\begin{align*}
\text{Kw} & = 10^{-14} \\
\text{pH} & = 6.69
\end{align*}
\]

:

\[
\begin{align*}
\text{Kw} & = 10^{-14} \\
\text{pH} & = 6.69
\end{align*}
\]

:

\[
\begin{align*}
\text{Kw} & = 10^{-14} \\
\text{pH} & = 6.69
\end{align*}
\]

:

\[
\begin{align*}
\text{Kw} & = 10^{-14} \\
\text{pH} & = 6.69
\end{align*}
\]

:

\[
\begin{align*}
\text{Kw} & = 10^{-14} \\
\text{pH} & = 6.69
\end{align*}
\]

:

\[
\begin{align*}
\text{Kw} & = 10^{-14} \\
\text{pH} & = 6.69
\end{align*}
\]

:

\[
\begin{align*}
\text{Kw} & = 10^{-14} \\
\text{pH} & = 6.69
\end{align*}
\]

:

\[
\begin{align*}
\text{Kw} & = 10^{-14} \\
\text{pH} & = 6.69
\end{align*}
\]

:

\[
\begin{align*}
\text{Kw} & = 10^{-14} \\
\text{pH} & = 6.69
\end{align*}
\]

:

\[
\begin{align*}
\text{Kw} & = 10^{-14} \\
\text{pH} & = 6.69
\end{align*}
\]
: \(\text{AN}_{6p, 4f, 4d, 6s} \)' \(\text{Kor} \) \(\text{Op}, y' \) \(\text{DE} \).

- \(4d > 6s > 4f > 6p \) \(\text{b} \)
- \(6p > 4f > 6s > 4d \) \(\text{y} \)
- \(4f > 4d > 6s > 6p \) \(\text{D} \)

<table>
<thead>
<tr>
<th>لاءلا</th>
<th>تزأغلا</th>
<th>بحلا</th>
</tr>
</thead>
<tbody>
<tr>
<td>لؤاف</td>
<td>(A) لؤاف</td>
<td>P</td>
</tr>
<tr>
<td>لؤاف</td>
<td>(A) لؤاف</td>
<td>s</td>
</tr>
<tr>
<td>لؤاف</td>
<td>(A) لؤاف</td>
<td>P</td>
</tr>
<tr>
<td>لؤاف</td>
<td>(B) لؤاف</td>
<td>d</td>
</tr>
</tbody>
</table>

: \(\text{Li}_{5(19K)} \) \(\text{A}_{(17Cl)} \) لعت لنر هب فلاك دو هبلاز .\(\text{De} \)

- 1 نر هب فلاك دو هدابش (D)
- 1 نر هب فلاك دو دا قاش (Y)

\(\text{A}_{4.1 \times 10^{-5}} \) \(\text{cm} \) لآلاك دو لآلاك قسيم52 دو LAOP لو ظلأة يأف ليس يدج .\(\text{DE} \)

: i أك

7 \(\text{b} \) 4(W) 6 (y) 3 (D)

: i سيف ناكم .\(\text{De} \)

.\(i \) سيف يأف لإك كرك لتي ديف كرف ديف كرف (D)
.\(i \) سيف يأف لإك دو لياك تي ديف كرف (Y)
.\(i \) سيف يأف لإك كرك كرك لتي ديف كرف (W)
.\(i \) سيف يأف لإك كرك كرك لتي ديف كرف (b)