INNATE IMMUNE RESPONSE

Micro 451

Presented By Dr. Nagwa Aref
TEACHING OBJECTIVES

• Understand the mechanisms of combating infection/disease
 • How does the body kill pathogens?
• To know the humoral and cellular components of the innate immune response
 • What are the key features and timing?
 • What is the mechanism of action of the components of the innate immune response?
OVERVIEW OF THE IMMUNE SYSTEM

Immune system

Innate (nonspecific)
1st line of defense
- Cellular components
- Humoral components

Adaptive (specific)
2nd line of defense
- Cellular components
- Humoral components
INNATE HOST DEFENSES AGAINST INFECTION

• Anatomical barriers
 • Mechanical, chemical, biological

• Humoral components
 • Complement, coagulation system, cytokines
 • Cellular components
 • Neutrophils, monocytes & macrophages, NK cells, eosinophils
ANATOMICAL BARRIERS - MECHANICAL

<table>
<thead>
<tr>
<th>System/Organ</th>
<th>Cell type</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>Squamous epithelium</td>
<td>Physical barrier Desquamation</td>
</tr>
<tr>
<td>Mucous membranes</td>
<td>Non-ciliated epithelium (e.g. GI tract)</td>
<td>Peristalsis</td>
</tr>
<tr>
<td></td>
<td>Ciliated epithelium (e.g. respiratory tract)</td>
<td>Mucociliary elevator</td>
</tr>
<tr>
<td></td>
<td>Epithelium (e.g. nasopharynx)</td>
<td>Flushing action of tears, saliva, mucus, urine</td>
</tr>
<tr>
<td>System/Organ</td>
<td>Component</td>
<td>Mechanism</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Skin</td>
<td>Sweat</td>
<td>Antimicrobial fatty acids</td>
</tr>
<tr>
<td>Mucous membranes</td>
<td>HCl (parietal cells), tears & saliva</td>
<td>Low pH</td>
</tr>
<tr>
<td></td>
<td>Defensins (respiratory & GI tract)</td>
<td>Lysozyme & phospholipase A</td>
</tr>
<tr>
<td></td>
<td>Surfactants (lung)</td>
<td>Antimicrobial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opsonin</td>
</tr>
</tbody>
</table>
Anatomical Barriers - Biological

<table>
<thead>
<tr>
<th>System/Organ</th>
<th>Component</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin and mucous membranes</td>
<td>Normal flora</td>
<td>Antimicrobial substances</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Competition for nutrients and colonization</td>
</tr>
</tbody>
</table>
HUMORAL COMPONENTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complement</td>
<td>Lysis of bacteria and some viruses</td>
</tr>
<tr>
<td></td>
<td>Opsonin</td>
</tr>
<tr>
<td></td>
<td>Increase in vascular permeability</td>
</tr>
<tr>
<td></td>
<td>Recruitment and activation of phagocytic cells</td>
</tr>
<tr>
<td>Coagulation system</td>
<td>Increase vascular permeability</td>
</tr>
<tr>
<td></td>
<td>Recruitment of phagocytic cells</td>
</tr>
<tr>
<td></td>
<td>B-lysin from platelets – a cationic detergent</td>
</tr>
<tr>
<td>Lactoferrin and transferrin</td>
<td>Compete with bacteria for iron</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>Breaks down bacterial cells walls</td>
</tr>
<tr>
<td>Cytokines</td>
<td>Various effects</td>
</tr>
</tbody>
</table>
CELLS OF THE IMMUNE SYSTEM

Immune system

Myeloid cells
- Granulocytic
 - Neutrophils
 - Basophils
 - Eosinophils
- Monocytic
 - Macrophages
 - Kupffer cells
 - Dendritic cells

Lymphoid cells
- T cells
 - Helper cells
 - Suppressor cells
 - Cytotoxic cells
- B cells
 - Plasma cells
- NK cells
<table>
<thead>
<tr>
<th>Cell</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophils</td>
<td>Phagocytosis and intracellular killing</td>
</tr>
<tr>
<td></td>
<td>Inflammation and tissue damage</td>
</tr>
<tr>
<td>Macrophages</td>
<td>Phagocytosis and intracellular killing</td>
</tr>
<tr>
<td></td>
<td>Extracellular killing of infected or altered self targets</td>
</tr>
<tr>
<td></td>
<td>Tissue repair</td>
</tr>
<tr>
<td></td>
<td>Antigen presentation for specific immune response</td>
</tr>
<tr>
<td>NK and LAK cells</td>
<td>Killing of virus-infected and altered self targets</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>Killing of certain parasites</td>
</tr>
</tbody>
</table>
PHAGOCYTOSIS AND INTRACELLULAR KILLING

Neutrophils and Macrophages
PHAGOCYTE RESPONSE TO INFECTION

• The SOS signals
 – N-formyl methionine-containing peptides
 – Clotting system peptides
 – Complement products
 – Cytokines released by tissue macrophages

• Phagocyte response
 – Vascular adherence
 – Diapedesis
 – Chemotaxis
 – Activation
 – Phagocytosis and killing

Source: SOM PathMicro online textbook
PHAGOCYTOSIS

A. Attachment via receptors
 - FcR, complement R, scavenger R, Toll-like R

B. Pseudopod extension

C. Phagosome formation

D. Granule fusion and Phagolysosome formation
Respiratory Burst

O₂-dependent MPO-independent reactions

<table>
<thead>
<tr>
<th>Glucose + NADP⁺</th>
<th>G-6-P-dehydrogenase</th>
<th>Pentose-P + NADPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADPH + O₂</td>
<td>NADPH oxidase</td>
<td>NADP⁺ + O₂</td>
</tr>
<tr>
<td>2O₂⁻ + 2H⁺</td>
<td>Superoxide dismutase</td>
<td>H₂O₂ + ¹⁰₂</td>
</tr>
<tr>
<td>2O₂⁻ + H₂O₂</td>
<td></td>
<td>OH⁺ + OH⁻ + ¹⁰₂</td>
</tr>
</tbody>
</table>

Toxic compounds: superoxide anion O₂⁻, hydrogen peroxide H₂O₂, singlet oxygen ¹⁰₂, hydroxyl radical OH⁺
RESPIRATORY BURST

O$_2$-dependent MPO-dependent reactions

\[
\begin{align*}
\text{H}_2\text{O}_2 + \text{Cl}^- & \xrightarrow{\text{myeloperoxidase}} \text{OCl}^- + \text{H}_2\text{O} \\
2\text{OCl}^- + \text{H}_2\text{O} & \xrightarrow{} \text{O}_2^1 + \text{Cl}^- + \text{H}_2\text{O}
\end{align*}
\]

Toxic compounds: hypochlorous acid OCl$^-$, singlet oxygen O$_2^1$
RESPIRATORY BURST

Detoxification reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Catalyst</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_2^- + 2H^+$</td>
<td>Superoxide dismutase</td>
<td>$H_2O_2 + O_2$</td>
</tr>
<tr>
<td>$2H_2O_2$</td>
<td>Catalase</td>
<td>$H_2O + O_2$</td>
</tr>
</tbody>
</table>
O$_2$-INDEPENDENT KILLING

<table>
<thead>
<tr>
<th>Effector molecule</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cationic proteins (cathepsin)</td>
<td>Damage to microbial membranes</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>Hydrolyses mucopeptides in the cell wall</td>
</tr>
<tr>
<td>Lactoferrin</td>
<td>Deprives pathogens of iron</td>
</tr>
<tr>
<td>Hydrolytic enzymes (proteases)</td>
<td>Digests killed organisms</td>
</tr>
</tbody>
</table>
SUMMARY OF INTRACELLULAR KILLING PATHWAYS

- Intracellular killing
 - \(O_2 \) dependent
 - \(O_2 \) independent
 - Myleoperoxidase dependent
 - Myleoperoxidase independent
NITRIC OXIDE-DEPENDENT KILLING

- Bacteria binds to macrophage
- Production of TNF-alpha
- Upregulates iNOS
- Release of NO
- NO is toxic to infected cells in vicinity of macrophage

$\text{IFN-\gamma} \rightarrow \text{TNF} \rightarrow \text{NO synthetase}$

$\text{O}_2 + \text{L-arginine} \rightarrow \text{NO} + \text{citrulline}$

Macrophage
NON-SPECIFIC KILLER CELLS

NK cells
Eosinophils
Mast cells
INNATE RESPONSE TO VIRUS INFECTION AND ALTERED SELF

- Infected or altered self (transformed) cell down regulated MHC
- NK does not receive inhibitory signal
- Signals kill infected cell
INNATE RESPONSE TO EXTRACELLULAR MICROORGANISMS (PARASITES)

- Activated eosinophils release granule components
 - Major basic protein
 - Major component of granules
 - Eosinophil peroxidase
 - Cationic hemoprotein
 - Eosinophil cationic protein
 - Ribonuclease
DETERMINANTS RECOGNIZED BY THE INNATE IMMUNE RESPONSE

- PAMPs- pathogen associated molecular patterns
- PRRs- pattern recognition receptors
PATHOGEN-ASSOCIATED MOLECULAR PATTERNS (PAMPS)

- Non-specific (not antigen specific) receptor recognition
- Part of innate antimicrobial defense
- Toll-like receptors on macrophages bind pathogen and cause activation
DETERMINANTS RECOGNIZED BY THE INNATE IMMUNE SYSTEM

Opsonization: complement activation
- PAMP = microbial cell wall
 - PRR = complement
- PAMP = mannose-containing carbs
 - PRR = mannose-binding protein

Production of IFN (antiviral)
- PAMP = dsRNA
 - PRR = TLR3
- PAMP = U-rich ssRNA (viral)
 - PRR = TLR7

Macrophage activation; secretion of inflammatory cytokines
- PAMP = LPS
 - PRR = TLR4
- PAMP = flagellin
 - PRR = TLR5
- PAMP = CpG containing DNA
 - PRR = TLR9

Phagocytosis
- PAMP = polyanions
 - PRR = scavenger receptors
IMMUNE RESPONSE TO DAMAGE

- Dependent on what, where and how bad
- Phased response with critical timing
 - Requires chemokine signaling, receptor binding, etc

Days: 0 4 7
Weeks: 2 4 6