تجاوز إلى المحتوى الرئيسي
User Image

Ahmed Sadeq Ahmed Al-fatesh

Professor

Professor

كلية الهندسة
King Saud University, P.O Box-800, Riyadh-11421 Kingdom of Saudi Arabia
المنشورات
مقال فى مجلة
2014

Effect of nano-support and type of active metal on reforming of CH4 with CO2

Fakeeha, A. S. Al-Fatesh, M. A. Naeem, W. U. Khan, A. H. . 2014

Two series of Co and Ni based catalysts supported over commercial (ZrO2, CeO2, and Al2O3) nano supports were investigated for dry reforming of methane. The catalytic activity of both Co and Ni based catalysts were assessed at different reaction temperatures ranging from 500—800 °C; however, for stability the time on stream experiments were conducted at 700 °C for 6 h. Various techniques such as N2 adsorption-desorption isotherm, temperature-programmed reduction (H2-TPR), temperature-programmed desorption (CO2-TPD), temperature-programmed oxidation (TPO), X-ray diffraction (XRD), thermogravimetric analysis (TGA) were applied for characterization of fresh and spent catalysts. The catalytic activity and stability tests clearly showed that the performance of catalyst is strongly dependent on type of active metal and support. Furthermore, active metal particle size and Lewis basicity are key factors which have significant influence on catalytic performance. The results indicated that Ni supported over nano ZrO2 exhibited highest activity among all tested catalysts due to its unique properties including thermal stability and reducibility. The minimum carbon deposition and thus relatively stable performance was observed in case of Co-Al catalyst, since this catalyst has shown highest Lewis basicity.

رقم المجلد
61
مجلة/صحيفة
Journal of the Chinese Chemical Society
الصفحات
461–470
مزيد من المنشورات
publications

20% iron catalysts supported on combined alumina and silica through different proportions (Al2O3:SiO2:
100:0.00, 90.0:10.0, 80.0:20.0 and 0.0:100.0) were tested for the catalytic…

2019
publications

A novel approach to the in situ regeneration of a spent alumina-supported cobalt–iron
catalyst for catalytic methane decomposition is reported in this work. The spent catalyst was

2018