Skip to main content
User Image

Dr. ABDULAZIZ MOHAMMED ALAMRI

Demonstrator

BSc in Biochemistry, MSc and Ph.D. in Immunology, Biochemistry Department. College of Science, King Saud University

كلية العلوم
Office Address: Building 5 / Office : 2 A 60
publication
Journal Article
2022
Published in:

Binding Studies of Caffeic and p-Coumaric Acid with α-Amylase: Multispectroscopic and Computational Approaches Deciphering the Effect on Advanced Glycation End Products (AGEs)

Alpha-amylase (α-amylase) is a key player in managing diabetes and its related complications. This study was intended to have an insight into the binding of caffeic acid and coumaric acid with α-amylase and analyze the effect of these compounds on the formation of advanced glycation end-products (AGEs). Fluorescence quenching studies suggested that both the compounds showed an appreciable binding affinity towards α-amylase. The evaluation of thermodynamic parameters (ΔH and ΔS) suggested that the α-amylase-caffeic/coumaric acid complex formation is driven by van der Waals force and hydrogen bonding, and thus complexation process is seemingly specific. Moreover, glycation and oxidation studies were also performed to explore the multitarget to manage diabetes complications. Caffeic and coumaric acid both inhibited fructosamine content and AGE fluorescence, suggesting their role in the inhibition of early and advanced glycation end-products (AGEs). However, the glycation inhibitory potential of caffeic acid was more in comparison to p-coumaric acid. This high antiglycative potential can be attributed to its additional -OH group and high antioxidant activity. There was a significant recovery of 84.5% in free thiol groups in the presence of caffeic acid, while coumaric attenuated the slow recovery of 29.4% of thiol groups. In vitro studies were further entrenched by in silico studies. Molecular docking studies revealed that caffeic acid formed six hydrogen bonds (Trp 59, Gln 63, Arg 195, Arg 195, Asp 197 and Asp 197) while coumaric acid formed four H-bonds with Trp 59, Gln 63, Arg 195 and Asp 300. Our studies highlighted the role of hydrogen bonding, and the ligands such as caffeic or coumaric acid could be exploited to design antidiabetic drugs. Keywords: advanced glycation end-products; caffeic acid; coumaric acid; α-amylase.

Publication Work Type
Research article
Publisher Name
Molecules
Publishing City
Swaziland
more of publication
publications

Cerebrovascular disease is a threat to people with diabetes and hypertension. Diabetes can damage the brain by stimulating the renin-angiotensin system (RAS), leading to neurological deficits and…

by Abeeb Oyesiji Abiodun a , Dalia I AlDosari a , Amani Alghamdi a , Abdul Aziz Al-Amri a , Sarfaraz Ahmad b , Mohammad Shamsul Ola
2023
Published in:
Saudi Journal of Biological Sciences
publications

Abstract

by Shareefa A. AlGhamdi, Fahad A. Al-Abbasi, Amira M. Alghamdi, Asma B. Omer, Obaid Afzal, Abdulmalik S. A. Altamimi, Abdulaziz Alamri, Sami I. Alzarea, Waleed Hassan Almalki and Imran Kazmi
2023
Published in:
Royal Society
publications

Abstract
Background: Ovarian cancer leads to devastating outcomes, and its treatment is highly
challenging. At present, there is a lack of clinical symptoms and well-known sensitivity…

by Mohd Shahnawaz Khan, Nojood Altwaijry, Nasimudeen R. Jabir, Abdulaziz Mohammed Alamri, Mohammad Tarique, Azhar U. Khan4
2023
Published in:
Springer Nature