Transport of digoxin-loaded polymeric nanoparticles across BeWo cells, an in vitro model of human placental trophoblast

Journal Article
Albekairi, Norah A . 2015
المجلة \ الصحيفة: 
Therapeutic delivery
رقم الإصدار السنوي: 
DOI: 10.4155/tde.15.79
الصفحات: 
1325-1334
مستخلص المنشور: 

Background: Fetal arrhythmias can lead to fetal congestive heart failure and hydrops fetalis. Digoxin (the first-line treatment) has low transplacental permeability and high risk of maternal side effects. Biodegradable digoxin-loaded PEGylated poly(lactic-co-glycolic acid) nanoparticles may increase digoxin transport across BeWo b30 cell monolayers (an in vitro model of trophoblast in human placenta) by reducing the drug's interaction with P-gp. Results/methodology: The nanoparticles showed high encapsulation efficiency and sustained release over 48 h. Transport studies revealed significantly increased permeability across BeWo cell layers of digoxin-loaded nanoparticles when compared with free digoxin. P-gp inhibition also increased the permeability of digoxin, but not digoxin-loaded nanoparticles. Conclusion: This represents a novel treatment strategy for fetal cardiovascular disease which may improve maternal and fetal outcomes.

ملف مرفق: 
المرفقالحجم
PDF icon albekairi_2015_ther_deliv_6_1325_1.pdf667.99 كيلوبايت