145phys

General physics lab for physics students.

Lab location: 1C11 and 1C12 at PY Campus.

 

Experiments:

  1. Ohm's Law (OL) - قانون أوم.
  2. Force Table (FT) - طاولة القوى.
  3. Free Fall (FF) - السقوط الحر.
  4. Viscosity (VS) - معامل اللزوجة.
  5. Coefficients of Friction (CS) - الإحتكاك.
  6. Hooke's Law (HL) - قانون هوك.
  7. Newton's Law (NL) - قانون نيوتن.
  8. Focal Length (FL) - البعد البؤري للعدسات.
  9. Simple Pendulum (SP) - البندول البسيط.

 

ملحقات المادة الدراسية

التدريب الميداني

النماذج الخاصة بالتدريب

ملحقات المادة الدراسية

260 MIC

طرق عزل البكتيريا من مصادرمختلفة

الحصول على مزارع نقية

الاختبارات المتبعة في التعريف بما في ذلك الطرق الوراثية

المجاميع البكتيرية

خصائصها وطرق تصنيفها وأهميتها البيولوجية

ملحقات المادة الدراسية

Accelerated Detector Response Function in Squeezed Vacuum

Casimir/squeezed vacuum breaks Lorentz symmetry, by allowing light to propagate faster than $c$. We looked at the possible transformation  symmetry group such vacuum could obey. By solving the semi-classical Einstein field equation in squeezed vacuum, we have found that the background geometry describes an Anti-deSitter (AdS) geometry. Therefore, the proper transformation symmetry group is the (A)dS group. One can describe quantum field theory in a finite volume  as a quantum field theory (QFT) on AdS background, or vice versa.

Thermodynamics of Rotating Kaluza-Klein Black Holes in Gravity's Rainbow

In this paper, a four dimensional  rotating Kaluza Klien (K-K) black hole was deformed using rainbow functions derived from loop quantum gravity and non-commutative geometry. We studied the thermodynamic properties and critical phenomena of this deformed black hole. The deformed temperature and entropy showed the existence of a Planckian remnant.  The calculation of Gibbs free energy $ G$ for the ordinary and deformed black holes showed that both share a similar critical behaviour. 

ER= EPR and Non-Perturbative Action Integrals for Quantum Gravity

In this paper, we construct and calculate a non-perturbative path integrals in a multiply-connected space-time. This is done by by summing over homotopy classes of paths. The topology of the space-time is defined by Einstein-Rosen bridges (ERB) forming from the entanglement of quantum foam described by virtual black holes. As these `bubbles' are entangled, they ar econnected by Plankian ERB's because of the ER=EPR conjecture. Hence the space-time will possess a large first Betti number B1.

الصفحات

اشترك ب KSU Faculty آر.إس.إس