In this paper, we present some contributions to improve a previous work's approach presented for the segmentation of magnetic resonance images of the human brain, based on the unsupervised Hopfield neural network. We formulate the segmentation problem as a minimization of an energy function constructed with two terms, the cost-term as a sum of errors' squares, and the second term is a temporary noise added to the cost-term as an excitation to the network to escape from certain local minimums and be more close to the global minimum.