
Concepts of Programming Languages
Lecture 1 - Introduction

Patrick Donnelly

Montana State University

Spring 2014

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 1 / 46

OUAHID
Text Box

OUAHID
Text Box



Textbook

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 2 / 46

OUAHID
Text Box



Administrivia

Website:

http://nisl.cs.montana.edu/~pdonnelly/CSCI305/

Reading:

Chapter 1

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 3 / 46

http://nisl.cs.montana.edu/~pdonnelly/CSCI305/
OUAHID
Text Box



A good programming language is a conceptual universe
for thinking about programming.

A. Perlis

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 46



Reasons for Studying Programming Languages

Increased ability to express ideas

Improved background for choosing appropriate languages

Increased ability to learn new languages

Better understanding of significance of implementation

Better use of languages that are already known

Overall advancement of computing

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 46



Principles

Programming languages have four properties:
Syntax
Names
Types
Semantics

For any language:
Its designers must define these properties
Its programmers must master these properties

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 46



Syntax

Definition
The syntax of a programming language is a precise description of all
its grammatically correct programs.

When studying syntax, we ask questions like:

What is the grammar for the language?

What is the basic vocabulary?

How are syntax errors detected?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 46



Names

Various kinds of entities in a program have names:
variables
types
functions
parameters
classes
objects

Named entities are bound in a running program to:
Scope
Visibility
Type
Lifetime

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 46



Names

Various kinds of entities in a program have names:
variables
types
functions
parameters
classes
objects

Named entities are bound in a running program to:
Scope
Visibility
Type
Lifetime

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 46



Types

Definition
A type is a collection of values and a collection of operations on those
values.

Simple types:
numbers
characters
booleans, . . . etc.

Structured types
Strings,
lists,
trees,
hash tables, . . . etc..

Definition
A language’s type system can help to:

Determine legal operations
Detect type errors

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 46



Semantics

Definition
The meaning of a program is called its semantics.

In studying semantics, we ask questions like:

When a program is running, what happens to the values of the
variables?

What does each statement mean?

What underlying model governs run-time behavior, such as
function call?

How are objects allocated to memory at run-time?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 46



Paradigms

Definition
A programming paradigm is a pattern of problem-solving thought that
underlies a particular genre of programs and languages.

There are four main programming paradigms:

Imperative

Object-oriented

Functional

Logic

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 46



Imperative Paradigm

Follows the classic von Neumann-Eckert model:

Program and data are indistinguishable in memory

Program = a sequence of commands

State = values of all variables when program runs

Large programs use procedural abstraction

Example imperative languages:
Cobol
Fortran
C
Ada
Perl

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 12 / 46



The von Neumann-Eckert Model

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 46



Object-oriented (OO) Paradigm
An OO Program is a collection of objects that interact by passing
messages that transform the state.

When studying OO, we learn about:
Sending Messages
Inheritance
Polymorphism

Example OO languages:
Smalltalk
Java
C++
C#
Python

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 14 / 46



Functional Paradigm
Functional programming models a computation as a collection of
mathematical functions.

Input = domain
Output = range

Functional languages are characterized by:
Functional composition
Recursion

Example functional languages:
Lisp
Scheme
ML
Haskell

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 46



Logic Paradigm

Logic programming declares what outcome the program should
accomplish, rather than how it should be accomplished.

When studying logic programming we see:
Programs as sets of constraints on a problem
Programs that achieve all possible solutions
Programs that are nondeterministic

Example logic programming languages:
Datalog
Prolog

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 46



Special Topics

Concurrency:

e.g., Client-server programs

Correctness:

How can we prove that a program does what it is
supposed to do under all circumstances?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 46



On Language Design

Design Constraints:

Computer architecture

Technical setting

Standards

Legacy systems

Outcomes and Goals:

1 How does a programming language emerge and become
successful?

2 What key characteristics make an ideal programming language?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 46



On Language Design

Design Constraints:

Computer architecture

Technical setting

Standards

Legacy systems

Outcomes and Goals:

1 How does a programming language emerge and become
successful?

2 What key characteristics make an ideal programming language?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 46



Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 46



Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 20 / 46



Language Design Trade-Offs

Reliability vs. cost of execution
Example: Java demands all references to array elements be
checked for proper indexing, which leads to increased execution
costs

Readability vs. writability
Example: APL provides many powerful operators (and a large
number of new symbols), allowing complex computations to be
written in a compact program but at the cost of poor readability

Writability (flexibility) vs. reliability
Example: C++ pointers are powerful and very flexible but are
unreliable

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 21 / 46



Compilation

Compiler – translate high-level program (source language) into
machine code (machine language)

Programs are translated into machine language; includes JIT
systems
Slow translation, fast execution
Use: Large commercial applications

Example compiled languages:
Fortran, Cobol, C, C++

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 46



Compilation

Compiler – translate high-level program (source language) into
machine code (machine language)

Programs are translated into machine language; includes JIT
systems
Slow translation, fast execution
Use: Large commercial applications

Example compiled languages:
Fortran, Cobol, C, C++

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 46



Compilation
Compilation process has several phases:

lexical analysis: converts characters in the source program into
lexical units

syntax analysis: transforms lexical units into parse trees which
represent the syntactic structure of program

semantics analysis: generate intermediate code

code generation: machine code is generated

Load module (executable image): the user and system code
together

Linking and loading: the process of collecting system program units
and linking them to a user program

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 46



Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 24 / 46



Von Neumann Bottleneck

Connection speed between a computer’s memory and its processor
determines the speed of a computer

Program instructions often can be executed much faster than the
speed of the connection; the connection speed thus results in a
bottleneck

Known as the von Neumann bottleneck; it is the primary limiting
factor in the speed of computers

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 25 / 46



Pure Interpretation
Interpreter – executes instructions on a virtual machine

Programs are interpreted by another program known as an
interpreter

No translation

Easier implementation of programs (run-time errors can easily and
immediately be displayed)

Slower execution (10 to 100 times slower than compiled programs)

Often requires more space

Now rare for traditional high-level languages but recent comeback
with some Web scripting languages (e.g., JavaScript, PHP)

Use: Small programs or when efficiency is not an issue

Example interpreted languages:
Scheme, Haskell, Python

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 46



Pure Interpretation
Interpreter – executes instructions on a virtual machine

Programs are interpreted by another program known as an
interpreter

No translation

Easier implementation of programs (run-time errors can easily and
immediately be displayed)

Slower execution (10 to 100 times slower than compiled programs)

Often requires more space

Now rare for traditional high-level languages but recent comeback
with some Web scripting languages (e.g., JavaScript, PHP)

Use: Small programs or when efficiency is not an issue

Example interpreted languages:
Scheme, Haskell, Python

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 46



The Interpreting Process

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 27 / 46



Hybrid Implementation Systems

A compromise between compilers and pure interpreters

A high-level language program is translated to an intermediate
language that allows easy interpretation

Faster than pure interpretation

Use: Small and medium systems when efficiency is not the first
concern

Example Hybrid compilation/interpretation
The Java Virtual Machine (JVM)
Perl programs are partially compiled to detect errors before
interpretation

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 28 / 46



Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 29 / 46



Just-in-Time Implementation Systems

Initially translate programs to an intermediate language

Then compile the intermediate language of the subprograms into
machine code when they are called

Machine code version is kept for subsequent calls

JIT systems are widely used for Java programs

.NET languages are implemented with a JIT system

In essence, JIT systems are delayed compilers

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 46



Preprocessors

Preprocessor macros (instructions) are commonly used to specify that
code from another file is to be included

A preprocessor processes a program immediately before the program
is compiled to expand embedded preprocessor macros

A well-known example: C preprocessor expands #include,
#define, and similar macros

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 31 / 46



Characteristics of a Successful Language

Simplicity and readability

Clarity about binding

Reliability

Support

Abstraction

Orthogonality

Efficient implementation

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 32 / 46



Characteristics of a Successful Language

Simplicity and readability

Clarity about binding

Reliability

Support

Abstraction

Orthogonality

Efficient implementation

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 33 / 46



Simplicity and Readability

Small instruction set:
e.g., Java vs Scheme

Simple syntax:
e.g., C/C++/Java vs Python

Benefits:
Ease of learning
Ease of programming

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 34 / 46



Characteristics of a Successful Language

Simplicity and readability

Clarity about binding

Reliability

Support

Abstraction

Orthogonality

Efficient implementation

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 35 / 46



Clarity about Binding
A language element is bound to a property at the time that property is
defined for it.

Definition
A binding is the association between an object and a property of that
object.

Examples
a variable and its type
a variable and its value

Early binding takes place at compile-time.

Late binding takes place at run time

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 36 / 46



Clarity about Binding
A language element is bound to a property at the time that property is
defined for it.

Definition
A binding is the association between an object and a property of that
object.

Examples
a variable and its type
a variable and its value

Early binding takes place at compile-time.

Late binding takes place at run time

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 36 / 46



Clarity about Binding
A language element is bound to a property at the time that property is
defined for it.

Definition
A binding is the association between an object and a property of that
object.

Examples
a variable and its type
a variable and its value

Early binding takes place at compile-time.

Late binding takes place at run time

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 36 / 46



Characteristics of a Successful Language

Simplicity and readability

Clarity about binding

Reliability

Support

Abstraction

Orthogonality

Efficient implementation

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 37 / 46



Reliability
A language is reliable if:

Program behavior is the same on different platforms
e.g., early versions of Fortran

Type errors are detected
e.g., C vs Haskell

Semantic errors are properly trapped
e.g., C vs C++

Memory leaks are prevented
e.g., C vs Java

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 38 / 46



Characteristics of a Successful Language

Simplicity and readability

Clarity about binding

Reliability

Support

Abstraction

Orthogonality

Efficient implementation

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 39 / 46



Language Support

Accessible (public domain) compilers/interpreters

Good texts and tutorials

Wide community of users

Integrated with development environments (IDEs)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 46



Characteristics of a Successful Language

Simplicity and readability

Clarity about binding

Reliability

Support

Abstraction

Orthogonality

Efficient implementation

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 41 / 46



Abstraction in Programming

Data:

Programmer-defined types/classes

Class libraries

Procedural:

Programmer-defined functions

Standard function libraries

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 42 / 46



Characteristics of a Successful Language

Simplicity and readability

Clarity about binding

Reliability

Support

Abstraction

Orthogonality

Efficient implementation

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 43 / 46



Orthogonality

Definition
A language is orthogonal if its features are built upon a small,
mutually independent set of primitive operations.

Fewer exceptional rules = conceptual simplicity

Example
restricting types of arguments to a function

Tradeoffs with efficiency

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 44 / 46



Orthogonality

Definition
A language is orthogonal if its features are built upon a small,
mutually independent set of primitive operations.

Fewer exceptional rules = conceptual simplicity

Example
restricting types of arguments to a function

Tradeoffs with efficiency

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 44 / 46



Characteristics of a Successful Language

Simplicity and readability

Clarity about binding

Reliability

Support

Abstraction

Orthogonality

Efficient implementation

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 45 / 46



Efficient Implementation

Embedded systems
Real-time responsiveness (e.g., navigation)
Failures of early Ada implementations

Web applications
Responsiveness to users (e.g., Google search)

Corporate database applications
Efficient search and updating

AI applications
Modeling human behaviors

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 46 / 46




