
Concepts of Programming Languages
Lecture 3 - Imperative Programming

Patrick Donnelly

Montana State University

Spring 2014

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 1 / 26

Administrivia

Assignments:

Homework #1 : due 01.24

Reading:

Chapters 1 and 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 2 / 26

I really hate this darn machine;
I wish they would sell it;

It won’t do what I want it to,
but only what I tell it.

Anonymous Programmer’s Lament

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 3 / 26

Imperative Programming

Oldest and most well-developed paradigm

Mirrors computer architecture

Languages:

Fortran, Pascal

C, Clite

Ada 83

Perl

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 26

Imperative Programming

Programs written in imperative programming languages consist of:

A program state

Instructions that change the program state

Program instructions are “imperative” in the grammatical sense of
imperative verbs that express a command

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 26

John von Neuman (1908 - 1957)

Hungarian-American
mathematician

Came to Princeton in 1930’s

Became interested in computers
while participating in the
development of the hydrogen
bomb.

First person to document the basic
concepts of stored program
computers

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 26

The von Neumann-Eckert Model

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 26

What Makes a Language Imperative?

In a von Neumann machine, memory holds:

Instructions

Data

Assignment statement

Others:

I Conditional branching
I Unconditional branch (goto)

There is a duality of instructions and data→ programs can be self
modifying

Von Neumann outlined this structure in a document known as the “First
Draft of a Report on the EDVAC” June, 1945

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 26

The von Neumann-Eckert Model

Earlier computers had fixed programs: they were hardwired to do one
thing.

Sometimes external programs were implemented with paper tape or by
setting switches.

Eckert and Mauchly considered stored program computers as early as
1944

During WW II they designed & built the ENIAC (although for simplicity
the stored program concept was not included at first)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 26

The von Neumann-Eckert Model

Later (with von Neumann), they worked on the EDVAC

First stored program electronic computer: the Manchester ESSM
(Baby)

Victoria University of Manchester

Executed its first program June 21, 1948

A number of other stored program machines were under development
around this time.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 26

Stored-Program Computer 1945

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 26

History of Imperative Languages

first were assembly languages

1954-55 Fortan developed for IBM 704

1958 ALGOL

1960 COBOL developed by government committee

1964 BASIC

1970 Pascal developed by Niklaus Wirth

1972 C developed by Dennis Ritchie

1978-83 Ada developed by DoD

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 12 / 26

Imperative Programming Language

Definition
An imperative programming language is one which is Turing
complete and also supports certain common historical features:

Control structures

Input/Output

Error and exception handling

Procedural abstraction

Expressions and assignment

Library support for data strctures

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 26

Flowchart for Fibonacci

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 14 / 26

Imperative Programming Language

Imperative programming languages specify a sequence of operations
for the computer to execute.

Declarative languages describe the solution space, provide
knowledge required to get there, but don’t describe the steps to get to
the solution.

Functional languages (e.g., Haskell, OCaml) and logic languages are
declarative (e.g., Prolog).

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 26

Imperative Programming Language

Nicholas Wirth described imperative programs as being “algorithms
plus data structures”.

Algorithms become programs through the process of procedural
abstraction and stepwise refinement.

Libraries of reusable functions support the process (functions =
procedures)

Definition
Imperative programming + procedures = procedural programming.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 26

Procedural Abstraction

Definition
Procedural abstraction allows the programmer to be concerned
mainly with a function interface, ignoring the details of how it is
computed.

Abstraction allows us to think about what is being done, not how it is
implemented.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 26

Procedural Abstraction

Definition
Procedural abstraction allows the programmer to be concerned
mainly with a function interface, ignoring the details of how it is
computed.

Abstraction allows us to think about what is being done, not how it is
implemented.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 26

Stepwise Refinement

Definition
The process of stepwise refinement utilizes procedural abstraction to
develop an algorithm starting with a general form and ending with an
implementation.

This is also called functional decomposition.

e.g., sort(list, len)

Programmers start with a description of what the program should do,
including I/O, and repeatedly break the problem into smaller parts, until
the sub-problems can be expressed in terms of the primitive states and
data types in the language.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 26

Structured Programming

Definition
Structured programming is a disciplined approach to imperative
program design.

Uses procedural abstraction and top-down design to identify program
components (also called modules or structures).

Program structures combined in a limited number of ways, so
understanding how each structure works means you understand how
the program works

Program control flow is based on decisions, sequences, loops, but. . . .

Does not use goto statements

Modules are developed, tested separately and then integrated into the
whole program.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 26

Characteristics of Imperative Languages

Statements are commands:

Command order is critical to correct execution

Programmers control all aspects: algorithm specification, memory
management, variable declarations, etc.

They work by modifying program state

Statements reflect machine language instructions.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 20 / 26

Features of Imperative Languages

They are usually “typed” either statically or dynamically.
Basic data types (e.g.,int, float, boolean, char)
Compound data types (structs, arrays).

Statement types:
Declarations, Assignment, Conditionals, Loops

I/O and error handling mechanisms.

A method of grouping all of the above into a complete program -
(program composition).

Procedural abstraction, step-wise refinement, function
mechanisms.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 21 / 26

Assignment

Assignment statement is fundamental:

target = expression

This is a destructive assignment statement (changes program state).

Assignment operators: = or := or psuedocode←

Based on machine operations such as MOV or STO.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 26

Expressions

Expressions represent a value and have a type.

Understanding expressions means understanding operator
precedence, operator overloading, casting and type conversion,
among other issues.

Simple arithmetic expressions are based on machine language
arithmetic operators (DIV, MUL, etc)

Logical operators are based on similar ML instructions (AND, OR, etc)

Recall assembly uses different instructions for different types (integer
vs. floating point).

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 26

Expressions and Assignment

Definition
In copy semantics, an expression is evaluated to a value, which is
copied to the target; used by imperative languages.

Definition
In reference semantics, an expression is evaluated to an object,
whose pointer is copied to the target; used by object-oriented
languages.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 24 / 26

Libraries

There exist vast libraries of functions for most imperative languages.

International Mathematics and Statistics Library (IMSL) contains
thousands of mathematical and statistical functions for many
languages.

Partially accounts for the longevity of languages like Fortran, Cobol,
and C.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 25 / 26

Imperative Programming

Imperative programming is the oldest programming paradigm

It is based on the von Neumann-Eckley model of a computer

It works by changing the program state through assignment statements

Procedural abstraction and structured programming are its design
techniques.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 26

