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Administrivia

Assignments:

Programming #1 : due 02.10

Reading:

Chapter 3
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A language that is simple to parse for the compiler is also simple to
parse for the human programmer.

N. Wirth (1974)
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Terminology
Definition
A sentence is a string of characters over some alphabet.

Definition
A language is a set of sentences.

Definition
A lexeme is the lowest level syntactic unit of a language (e.g., *,
sum, begin).

Definition
A token is a category of lexemes (e.g., identifier).
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Grammars

Definition
A metalanguage is a language used to define other languages.

Definition
A grammar is a metalanguage used to define the syntax of a
language.

This course is interested in using grammars to define the syntax of a
programming language.
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Context-Free Grammars

Developed by Noam Chomsky in the mid-1950s

Language generators, meant to describe the syntax of natural
languages

Define a class of languages called context-free languages
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Backus-Naur Form (BNF)

Definition
Backus Normal Form (1959) is a stylized version of a context-free
grammar (cf. Chomsky hierarchy)

First used to define syntax of Algol 60

Now used to define syntax of most major languages
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BNF Grammar
Definition
Nonterminals act like syntactic variables for representing classes of
syntactic structures.

Definition
Terminals are lexemes or tokens.

Definition
A production rule has a left-hand side (LHS), which is a nonterminal,
and a right-hand side (RHS), which is a string of terminals and/or
nonterminals

Definition
A start symbol is a special element of the nonterminals of a grammar.
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BNF Grammar

Set of productions: P
terminal symbols: T
nonterminal symbols: N
start symbols: S ∈ N

A production has the form:

A→ ω

where A ∈ N and ω ∈ (N ∪ T )∗
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Example: Binary Digits

Consider the grammar:

binaryDigit → 0
binaryDigit → 1

or equivalently:

binaryDigit → 0 | 1

where | is a metacharacter that separates alternatives.
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Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2
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Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

We can derive any unsigned integer, like 352, from this grammar.

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2
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Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Derivation of 352 as an Integer is a 6-step process.

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2
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Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Use a grammar rule to enable each step:

Integer → Integer Digit

→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2
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Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Replace a nonterminal by a right-hand side of one of its rules:

Integer → Integer Digit
→ Integer 2

→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2
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Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Each step follows from the one before it:

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2

→ Integer 5 2
→ Digit 5 2
→ 3 5 2
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Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

You finish when there are only terminal symbols remaining.

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2
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Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

This method was a rightmost derivation.

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2
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Derivations

An alternate derivation of 352.

Integer → Integer Digit
→ Integer Digit Digit
→ Digit Digit Digit
→ 3 Digit Digit
→ 3 5 Digit
→ 3 5 2

This is called a leftmost derivation, since at each step the leftmost
nonterminal is replaced.
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Notation for Derivations

Integer →∗ 352

Means that 352 can be derived in a finite number of steps using the
grammar for Integer.

352 → L(G)

Means that 352 is a member of the language defined by grammar G.

L(G) = { ω ∈ T ∗ | Integer →∗ ω }

Means that the language defined by grammar G is the set of all symbol
strings ω that can be derived as an Integer.
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Parse Trees

Definition
A parse tree is a graphical representation of a derivation.

Each internal node of the tree corresponds to a step in the
derivation.

Each child of a node represents a right-hand side of a production.

Each leaf node represents a symbol of the derived string, reading
from left to right.
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Parse Trees

The step Integer → Integer Digit appears in the parse tree as:
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Parse Trees
Parse Tree for 352 as an Integer:
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Arithmetic Expression Grammar

The following grammar defines the language of arithmetic expressions
with:

1-digit integers,
addition, and
subtraction.

Expr → Expr + Term | Expr - Term | Term
Term → 0 | ...| 9 | ( Expr )
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Parse Trees
Parse of the String 5-4+3:
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Associativity and Precedence

A grammar can be used to define associativity and precedence among
the operators in an expression.

Example
+ and - are left-associative operators in mathematics;
* and / have higher precedence than + and - .

Consider the more interesting grammar G1:

Expr → Expr + Term | Expr - Term | Term
Term → Term * Factor | Term / Factor |

Term % Factor | Factor
Factor → Primary ** Factor | Primary
Primary → 0 | ...| 9 | ( Expr )
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Parse of
4**2**3+5*6+7
for Grammar G1
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Associativity and Precedence for G1

Precedence Associativity Operators
3 right **
2 left * / %
1 left + -

These relationships are shown by the structure of the parse tree:
highest precedence at the bottom, and left-associativity on the left at
each level.
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Derivations

Definition
Every string of symbols in a derivation is a sentential form.

Definition
A sentence is a sentential form that has only terminal symbols.

Definition
A leftmost derivation is one in which the leftmost nonterminal in each
sentential form is the one that is expanded.
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Ambiguous Grammars

Definition
A grammar is ambiguous if one of its strings has two or more
diffferent parse trees.

e.g., Grammar G1 above is unambiguous.

C, C++, and Java have a large number of
operators and
precedence levels

Instead of using a large grammar, we can:
Write a smaller ambiguous grammar, and
Give separate precedence and associativity
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An Ambiguous Expression

Consider the grammar G2:

Expr → Expr Op Expr | ( Expr ) | Integer
+ | - | * | / | % | **

Notes:

G2 is equivalent to G1 (i.e., its language is the same)

G2 has fewer productions and nonterminals than G1.

However, G2 is ambiguous.
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Ambiguous Parse of 5-4+3 using grammar G2
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Ambiguous Expression Grammar

Ambiguous Example:

<expr> → <expr> <op> <expr> | const
<op> → / | -

Unambiguous Example:

<expr> → <expr> - <term> | <term>
<term> → <term> / const| const
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Ambiguous Expression Grammar

Ambiguous Example:

<expr> → <expr> <op> <expr> | const
<op> → / | -

Unambiguous Example:

<expr> → <expr> - <term> | <term>
<term> → <term> / const| const
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The Dangling Else

IfStatement -> if ( Expression ) Statement |
if ( Expression ) Statement else Statement

Statement -> Assignment | IfStatement | Block

Block -> Statements

Statements -> Statements Statement | Statement
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Example

With which ‘if’ does the ‘else’ associate?

The first or the second?

if (x < 0)
if (y < 0)

y = y - 1;
else

y = 0;

Answer: either one!
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The Dangling Else Ambiguity
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Solving the Dangling Else Ambiguity
1 Algol 60, C, C++:

associate each else with closest if;
use {} or begin...end to override.

2 Algol 68, Modula, Ada:
use explicit delimiter to end every conditional (e.g., if...fi)

3 Java: rewrite the grammar to limit what can appear in a
conditional:

IfThenStatement → if ( Expression ) Statement
IfThenElseStatement → if ( Expression )

StatementNoShortIf
else Statement

The category StatementNoShortIf includes all except
IfThenStatement.
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Extended BNF (EBNF)

BNF:
recursion for iteration
nonterminals for grouping

EBNF: additional metacharacters
{ } for a series of zero or more
( ) for a list, must pick one
[ ] for an optional list; pick none or one
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EBNF Examples

Expression is a list of one or more Terms separated by
operators + and -

Expression → Term { ( + | - ) Term }
IfStatement → if ( Expression ) Statement

[ else Statement ]

C-style EBNF lists alternatives vertically and uses opt to signify
optional parts.

IfStatement:
if ( Expression ) Statement ElsePartopt

ElsePart:
else Statement
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EBNF to BNF

We can always rewrite an EBNF grammar as a BNF grammar.

For example:

A → x { y } z

can be rewritten:

A → x A’ z
A’ → ε | y A’

While EBNF is no more powerful than BNF, its rules are often simpler
and clearer.
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EBNF to BNF Example

BNF:
<expr> → <expr> + <term>

| <expr> - <term>
| <term>

<term> → <term> * <factor>
| <term> / <factor>
| <factor>

EBNF:
<expr> → <term> (+ | -) <term>
<term> → <factor> (* | /) <factor>
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Syntax Diagram for Expressions with Addition
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Chomsky Hierarchy

1 Regular grammar

2 Context-free grammar (BNF)

3 Context-sensitive grammar

4 Unrestricted grammar
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Regular Grammar

Simplest; least powerful

Equivalent to:
Regular expression
Finite-state automaton

Right regular grammar: ω ∈ T ∗,B ∈ N
A→ ωB
A→ ω

Integer → 0 Integer | 1 Integer | ...| 9 Integer |
0 | 1 | ...| 9
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Regular Grammars

Left regular grammar: equivalent

Used in construction of tokenizers

Less powerful than context-free grammars

Not a regular language, such as:

{anbn|n ≥ 1}

Therefore, cannot balance: ( ), { }, begin end
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Context-Free Grammars

BNF a stylized form of CFG

Equivalent to a pushdown automaton

For a wide class of unambiguous CFGs,
there are table-driven, linear time parsers
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Context-Sensitive Grammars

Production:

α→ β |α| ≥ |β|

α, β ∈ (N ∪ T )∗

Lefthand side can be composed of strings of terminals and
nonterminals

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 42



Undecidable Properties of CSGs

Given a string ω and grammar G : ω ∈ L(G)

L(G) is non-empty

Definition

Undecidable means that you cannot write a computer program that is
guaranteed to halt to decide the question for all ω ∈ L(G).
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Unrestricted Grammar

Equivalent to:

Turing machine

von Neumann machine

C++, Java

That is, can compute any computable function.
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