
Concepts of Programming Languages
Lecture 4 - Grammars

Patrick Donnelly

Montana State University

Spring 2014

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 1 / 42

Administrivia

Assignments:

Programming #1 : due 02.10

Reading:

Chapter 3

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 2 / 42

A language that is simple to parse for the compiler is also simple to
parse for the human programmer.

N. Wirth (1974)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 3 / 42

Terminology
Definition
A sentence is a string of characters over some alphabet.

Definition
A language is a set of sentences.

Definition
A lexeme is the lowest level syntactic unit of a language (e.g., *,
sum, begin).

Definition
A token is a category of lexemes (e.g., identifier).

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 42

Grammars

Definition
A metalanguage is a language used to define other languages.

Definition
A grammar is a metalanguage used to define the syntax of a
language.

This course is interested in using grammars to define the syntax of a
programming language.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 42

Context-Free Grammars

Developed by Noam Chomsky in the mid-1950s

Language generators, meant to describe the syntax of natural
languages

Define a class of languages called context-free languages

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 42

Backus-Naur Form (BNF)

Definition
Backus Normal Form (1959) is a stylized version of a context-free
grammar (cf. Chomsky hierarchy)

First used to define syntax of Algol 60

Now used to define syntax of most major languages

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 42

BNF Grammar
Definition
Nonterminals act like syntactic variables for representing classes of
syntactic structures.

Definition
Terminals are lexemes or tokens.

Definition
A production rule has a left-hand side (LHS), which is a nonterminal,
and a right-hand side (RHS), which is a string of terminals and/or
nonterminals

Definition
A start symbol is a special element of the nonterminals of a grammar.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 42

BNF Grammar
Definition
Nonterminals act like syntactic variables for representing classes of
syntactic structures.

Definition
Terminals are lexemes or tokens.

Definition
A production rule has a left-hand side (LHS), which is a nonterminal,
and a right-hand side (RHS), which is a string of terminals and/or
nonterminals

Definition
A start symbol is a special element of the nonterminals of a grammar.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 42

BNF Grammar
Definition
Nonterminals act like syntactic variables for representing classes of
syntactic structures.

Definition
Terminals are lexemes or tokens.

Definition
A production rule has a left-hand side (LHS), which is a nonterminal,
and a right-hand side (RHS), which is a string of terminals and/or
nonterminals

Definition
A start symbol is a special element of the nonterminals of a grammar.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 42

BNF Grammar

Set of productions: P
terminal symbols: T
nonterminal symbols: N
start symbols: S ∈ N

A production has the form:

A→ ω

where A ∈ N and ω ∈ (N ∪ T)∗

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 42

Example: Binary Digits

Consider the grammar:

binaryDigit → 0
binaryDigit → 1

or equivalently:

binaryDigit → 0 | 1

where | is a metacharacter that separates alternatives.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 42

Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 42

Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

We can derive any unsigned integer, like 352, from this grammar.

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 42

Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Derivation of 352 as an Integer is a 6-step process.

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 42

Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Use a grammar rule to enable each step:

Integer → Integer Digit

→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 42

Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Replace a nonterminal by a right-hand side of one of its rules:

Integer → Integer Digit
→ Integer 2

→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 42

Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Each step follows from the one before it:

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2

→ Integer 5 2
→ Digit 5 2
→ 3 5 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 42

Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2
→ Integer 5 2

→ Digit 5 2
→ 3 5 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 42

Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2

→ 3 5 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 42

Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

You finish when there are only terminal symbols remaining.

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 42

Derivations

Consider the grammar:

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

This method was a rightmost derivation.

Integer → Integer Digit
→ Integer 2
→ Integer Digit 2
→ Integer 5 2
→ Digit 5 2
→ 3 5 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 42

Derivations

An alternate derivation of 352.

Integer → Integer Digit
→ Integer Digit Digit
→ Digit Digit Digit
→ 3 Digit Digit
→ 3 5 Digit
→ 3 5 2

This is called a leftmost derivation, since at each step the leftmost
nonterminal is replaced.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 12 / 42

Notation for Derivations

Integer →∗ 352

Means that 352 can be derived in a finite number of steps using the
grammar for Integer.

352 → L(G)

Means that 352 is a member of the language defined by grammar G.

L(G) = { ω ∈ T ∗ | Integer →∗ ω }

Means that the language defined by grammar G is the set of all symbol
strings ω that can be derived as an Integer.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 42

Notation for Derivations

Integer →∗ 352

Means that 352 can be derived in a finite number of steps using the
grammar for Integer.

352 → L(G)

Means that 352 is a member of the language defined by grammar G.

L(G) = { ω ∈ T ∗ | Integer →∗ ω }

Means that the language defined by grammar G is the set of all symbol
strings ω that can be derived as an Integer.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 42

Notation for Derivations

Integer →∗ 352

Means that 352 can be derived in a finite number of steps using the
grammar for Integer.

352 → L(G)

Means that 352 is a member of the language defined by grammar G.

L(G) = { ω ∈ T ∗ | Integer →∗ ω }

Means that the language defined by grammar G is the set of all symbol
strings ω that can be derived as an Integer.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 42

Parse Trees

Definition
A parse tree is a graphical representation of a derivation.

Each internal node of the tree corresponds to a step in the
derivation.

Each child of a node represents a right-hand side of a production.

Each leaf node represents a symbol of the derived string, reading
from left to right.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 14 / 42

Parse Trees

The step Integer → Integer Digit appears in the parse tree as:

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 42

Parse Trees
Parse Tree for 352 as an Integer:

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 42

Arithmetic Expression Grammar

The following grammar defines the language of arithmetic expressions
with:

1-digit integers,
addition, and
subtraction.

Expr → Expr + Term | Expr - Term | Term
Term → 0 | ...| 9 | (Expr)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 42

Parse Trees
Parse of the String 5-4+3:

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 42

Associativity and Precedence

A grammar can be used to define associativity and precedence among
the operators in an expression.

Example
+ and - are left-associative operators in mathematics;
* and / have higher precedence than + and - .

Consider the more interesting grammar G1:

Expr → Expr + Term | Expr - Term | Term
Term → Term * Factor | Term / Factor |

Term % Factor | Factor
Factor → Primary ** Factor | Primary
Primary → 0 | ...| 9 | (Expr)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 42

Associativity and Precedence

A grammar can be used to define associativity and precedence among
the operators in an expression.

Example
+ and - are left-associative operators in mathematics;
* and / have higher precedence than + and - .

Consider the more interesting grammar G1:

Expr → Expr + Term | Expr - Term | Term
Term → Term * Factor | Term / Factor |

Term % Factor | Factor
Factor → Primary ** Factor | Primary
Primary → 0 | ...| 9 | (Expr)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 42

Associativity and Precedence

A grammar can be used to define associativity and precedence among
the operators in an expression.

Example
+ and - are left-associative operators in mathematics;
* and / have higher precedence than + and - .

Consider the more interesting grammar G1:

Expr → Expr + Term | Expr - Term | Term
Term → Term * Factor | Term / Factor |

Term % Factor | Factor
Factor → Primary ** Factor | Primary
Primary → 0 | ...| 9 | (Expr)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 42

Parse of
4**2**3+5*6+7
for Grammar G1

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 20 / 42

Associativity and Precedence for G1

Precedence Associativity Operators
3 right **
2 left * / %
1 left + -

These relationships are shown by the structure of the parse tree:
highest precedence at the bottom, and left-associativity on the left at
each level.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 21 / 42

Derivations

Definition
Every string of symbols in a derivation is a sentential form.

Definition
A sentence is a sentential form that has only terminal symbols.

Definition
A leftmost derivation is one in which the leftmost nonterminal in each
sentential form is the one that is expanded.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 42

Ambiguous Grammars

Definition
A grammar is ambiguous if one of its strings has two or more
diffferent parse trees.

e.g., Grammar G1 above is unambiguous.

C, C++, and Java have a large number of
operators and
precedence levels

Instead of using a large grammar, we can:
Write a smaller ambiguous grammar, and
Give separate precedence and associativity

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 42

Ambiguous Grammars

Definition
A grammar is ambiguous if one of its strings has two or more
diffferent parse trees.

e.g., Grammar G1 above is unambiguous.

C, C++, and Java have a large number of
operators and
precedence levels

Instead of using a large grammar, we can:
Write a smaller ambiguous grammar, and
Give separate precedence and associativity

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 42

An Ambiguous Expression

Consider the grammar G2:

Expr → Expr Op Expr | (Expr) | Integer
+ | - | * | / | % | **

Notes:

G2 is equivalent to G1 (i.e., its language is the same)

G2 has fewer productions and nonterminals than G1.

However, G2 is ambiguous.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 24 / 42

Ambiguous Parse of 5-4+3 using grammar G2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 25 / 42

Ambiguous Expression Grammar

Ambiguous Example:

<expr> → <expr> <op> <expr> | const
<op> → / | -

Unambiguous Example:

<expr> → <expr> - <term> | <term>
<term> → <term> / const| const

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 42

Ambiguous Expression Grammar

Ambiguous Example:

<expr> → <expr> <op> <expr> | const
<op> → / | -

Unambiguous Example:

<expr> → <expr> - <term> | <term>
<term> → <term> / const| const

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 42

The Dangling Else

IfStatement -> if (Expression) Statement |
if (Expression) Statement else Statement

Statement -> Assignment | IfStatement | Block

Block -> Statements

Statements -> Statements Statement | Statement

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 27 / 42

Example

With which ‘if’ does the ‘else’ associate?

The first or the second?

if (x < 0)
if (y < 0)

y = y - 1;
else

y = 0;

Answer: either one!

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 28 / 42

Example

With which ‘if’ does the ‘else’ associate? The first?

or the second?

if (x < 0)
if (y < 0)

y = y - 1;
else

y = 0;

Answer: either one!

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 28 / 42

Example

With which ‘if’ does the ‘else’ associate? The first or the second?

if (x < 0)
if (y < 0)

y = y - 1;
else

y = 0;

Answer: either one!

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 28 / 42

Example

With which ‘if’ does the ‘else’ associate? The first or the second?

if (x < 0)
if (y < 0)

y = y - 1;
else

y = 0;

Answer: either one!

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 28 / 42

The Dangling Else Ambiguity

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 29 / 42

Solving the Dangling Else Ambiguity
1 Algol 60, C, C++:

associate each else with closest if;
use {} or begin...end to override.

2 Algol 68, Modula, Ada:
use explicit delimiter to end every conditional (e.g., if...fi)

3 Java: rewrite the grammar to limit what can appear in a
conditional:

IfThenStatement → if (Expression) Statement
IfThenElseStatement → if (Expression)

StatementNoShortIf
else Statement

The category StatementNoShortIf includes all except
IfThenStatement.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 42

Solving the Dangling Else Ambiguity
1 Algol 60, C, C++:

associate each else with closest if;
use {} or begin...end to override.

2 Algol 68, Modula, Ada:
use explicit delimiter to end every conditional (e.g., if...fi)

3 Java: rewrite the grammar to limit what can appear in a
conditional:

IfThenStatement → if (Expression) Statement
IfThenElseStatement → if (Expression)

StatementNoShortIf
else Statement

The category StatementNoShortIf includes all except
IfThenStatement.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 42

Solving the Dangling Else Ambiguity
1 Algol 60, C, C++:

associate each else with closest if;
use {} or begin...end to override.

2 Algol 68, Modula, Ada:
use explicit delimiter to end every conditional (e.g., if...fi)

3 Java: rewrite the grammar to limit what can appear in a
conditional:

IfThenStatement → if (Expression) Statement
IfThenElseStatement → if (Expression)

StatementNoShortIf
else Statement

The category StatementNoShortIf includes all except
IfThenStatement.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 42

Extended BNF (EBNF)

BNF:
recursion for iteration
nonterminals for grouping

EBNF: additional metacharacters
{ } for a series of zero or more
() for a list, must pick one
[] for an optional list; pick none or one

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 31 / 42

EBNF Examples

Expression is a list of one or more Terms separated by
operators + and -

Expression → Term { (+ | -) Term }
IfStatement → if (Expression) Statement

[else Statement]

C-style EBNF lists alternatives vertically and uses opt to signify
optional parts.

IfStatement:
if (Expression) Statement ElsePartopt

ElsePart:
else Statement

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 32 / 42

EBNF Examples

Expression is a list of one or more Terms separated by
operators + and -

Expression → Term { (+ | -) Term }
IfStatement → if (Expression) Statement

[else Statement]

C-style EBNF lists alternatives vertically and uses opt to signify
optional parts.

IfStatement:
if (Expression) Statement ElsePartopt

ElsePart:
else Statement

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 32 / 42

EBNF to BNF

We can always rewrite an EBNF grammar as a BNF grammar.

For example:

A → x { y } z

can be rewritten:

A → x A’ z
A’ → ε | y A’

While EBNF is no more powerful than BNF, its rules are often simpler
and clearer.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 33 / 42

EBNF to BNF Example

BNF:
<expr> → <expr> + <term>

| <expr> - <term>
| <term>

<term> → <term> * <factor>
| <term> / <factor>
| <factor>

EBNF:
<expr> → <term> (+ | -) <term>
<term> → <factor> (* | /) <factor>

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 34 / 42

EBNF to BNF Example

BNF:
<expr> → <expr> + <term>

| <expr> - <term>
| <term>

<term> → <term> * <factor>
| <term> / <factor>
| <factor>

EBNF:
<expr> → <term> (+ | -) <term>
<term> → <factor> (* | /) <factor>

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 34 / 42

Syntax Diagram for Expressions with Addition

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 35 / 42

Chomsky Hierarchy

1 Regular grammar

2 Context-free grammar (BNF)

3 Context-sensitive grammar

4 Unrestricted grammar

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 36 / 42

Regular Grammar

Simplest; least powerful

Equivalent to:
Regular expression
Finite-state automaton

Right regular grammar: ω ∈ T ∗,B ∈ N
A→ ωB
A→ ω

Integer → 0 Integer | 1 Integer | ...| 9 Integer |
0 | 1 | ...| 9

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 37 / 42

Regular Grammars

Left regular grammar: equivalent

Used in construction of tokenizers

Less powerful than context-free grammars

Not a regular language, such as:

{anbn|n ≥ 1}

Therefore, cannot balance: (), { }, begin end

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 38 / 42

Context-Free Grammars

BNF a stylized form of CFG

Equivalent to a pushdown automaton

For a wide class of unambiguous CFGs,
there are table-driven, linear time parsers

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 39 / 42

Context-Sensitive Grammars

Production:

α→ β |α| ≥ |β|

α, β ∈ (N ∪ T)∗

Lefthand side can be composed of strings of terminals and
nonterminals

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 42

Undecidable Properties of CSGs

Given a string ω and grammar G : ω ∈ L(G)

L(G) is non-empty

Definition

Undecidable means that you cannot write a computer program that is
guaranteed to halt to decide the question for all ω ∈ L(G).

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 41 / 42

Unrestricted Grammar

Equivalent to:

Turing machine

von Neumann machine

C++, Java

That is, can compute any computable function.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 42 / 42

