

College of Science. Department of Statistics & Operations Research

First Midterm Exam Academic Year 1443-1444 Hijri-First Semester

معلومات الامتحان Exam Information						
Course name	Modeling and Simulation	النمذجة والمحاكاة Modeling and Simulation				
Course Code	OPER 441	441 بحث	رمز المقرر			
Exam Date	5-10-2021	9-3-1444	تاريخ الامتحان			
Exam Time	1:3	وقت الامتحان				
Exam Duration	2.5 hours	ساعتان ونصف	مدة الامتحان			
Classroom No.			رقم قاعة الاختبار			
Instructor Name			اسم استاذ المقرر			

	Student Informa	معلومات الطالب tion				
Student's Name			أسم الطالب			
ID number			الرقم الجامعي			
Section No.			رقم الشعبة			
Serial Number			الرقم التسلسلي			
General Instructions:	تعليمات عامة:					
 Your Exam consists (except this paper) 	of PAGES	دان <u>صفحة.</u> (بابستثناء هذه	 عدد صفحات الامت الورقة) 			
 Keep your mobile as 	nd smart watch out of the	• يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.				

- Keep your i classroom.
- ٠

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

_								
#	Course Learning Outcomes (CLOs)	Points	Final Score					
1	Understanding the processes and steps for building a simulation model							
2	Implement an inverse cumulative distribution function based random variate generation algorithm							
3	Explain and implement the convolution algorithm for random variate generation							
4	Explain and implement the acceptance rejection algorithm for random variate generation							
5	Compute statistical quantities from simulation output							
6	Generate random numbers from any given distribution discrete or continuous							
7	Building simulation models from basic applications							
8								

EXAM COVER PAGE

Question #1: Answer the following with *True* or *False*:

1. The sample space in a random experiment is always determined and unique to everyone.
2. Validation step is to make sure that the simulation program is running correctly.
3. In call center model with two lines it is impossible to lose any incoming call.
4. Triangular distribution is used when there is lack of data
5. Simulating flight distance for an airplane is a discrete system simulation.
6. In Bank simulation, the variable (X = number of customers in in service) is a state variable for the system.
7. In Bank simulation, the variable (X = number of credit cards with customer) is a state variable for the system.
8. Every simulation run for the same model give the different results but same statistical properties.
9. The Geometric ang Gamma distribution both has memory less property
10. If a used computer didn't fail for the past 6 months then the probability that it will not fail the next month is always the same as buying a new computer now for any distribution.
11. The normal distribution with parameters μ and σ^2 always cover more than 80% of the distribution within $\pm 2\sigma$
12. The beta distribution between (0,1) can be rescaled for any real values because it has 4 parameters
13. The random variable with Exponential distribution is always has mean value equals to the standard deviation.
14. If the random variable has mean value equals to the variance then it must have a Poisson distribution.
15. The number of trials until first 2 success and stop is a binomial distribution.
16. The normal distribution always has the mean equals to the median
17. The Triangular distribution is used if there is no data except the range of the values for the random variable.
18. The Exponential distribution is a special case of Gamma distribution
19. Erlang Distribution is a special case of the Exponential distribution
20. The Uniform distribution is good when there is no data about the random process except the range of the possible values and the most likely value.
21. In building simulation model, we always have to start data collection after validation.
22. To use the Empirical distribution for the data, we must first estimate the parameters of the distribution for the data.
23. T is possible to create a Triangular distribution with exactly two parameters
24. The Weibull distribution is always having a closed form function for the CDF.
25. We can directly apply the inverse transform on The chi-Square distribution because has a closed form function for the CDF .

Question #2:

Given the following functions:

Give	n the following f	uncui	112		_		
A	np(1-p)		G	$\Gamma(\beta) = \int_0^\infty x^{\beta - 1} e^{-x} dx$		М	$a + (b-a)\left(\frac{\beta_1}{\beta_1 + \beta_2}\right)$
В	$\frac{q}{p^2}$		H	$rac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!} ext{for } x,\lambda \geq 0,$		N	$e^{\mu+\sigma^2/2}$
С	р		I	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$		0	$1-e^{-\lambda x}$,
D	p(1-p)		J	$\frac{\beta}{\alpha} \left(\frac{x - \nu}{\alpha} \right)^{\beta - 1} \exp\left[- \left(\frac{x - \nu}{\alpha} \right)^{\beta} \right], x \ge \nu$		Р	$\frac{1}{k\theta^2}$
E	$\frac{e^{-\alpha}\alpha^k}{k!}$		K	$\frac{\beta\theta}{\Gamma(\beta)}(\beta\theta x)^{\beta-1}e^{-\beta\theta x}, x > 0$		Q	$\binom{n}{x} p^{x} q^{n-x},$
F	$\frac{kq}{p^2}$		L	$\frac{1}{\sqrt{2\pi}\sigma x}\exp\left[-\frac{(\ln x-\mu)^2}{2\sigma^2}\right],$			

Complete the following by choosing the correct function from above

10	The random variable X has <i>Poisson</i> distribution if X has the pdf	
11	The random variable X has <i>Bernoulli</i> distribution (<i>p</i>), then X has the expected value	
1	The random variable X has <i>Exponential</i> distribution if X has the CDF	
5	The random variable X has <i>Lognormal</i> distribution if X has the pdf	
7	The random variable X has <i>Beta</i> distribution if X has the pdf	
8	The random variable X has <i>Lognormal</i> distribution, Then X has expected value	
9	The random variable X has <i>Beta</i> distribution, then X has the expected value	
12	The random variable X is has <i>Erlang</i> distribution (k) , then it has variance	
6	A way down any inhibit V has No active him any initial distribution (a) there V has the approximate	
0	A random variable X has <i>Negative binomial</i> distribution(<i>p</i>) then X has the a variance	
2	The random variable X is has <i>Erlang</i> distribution if X has the pdf	
2	The random variable X is has <i>Erlang</i> distribution if X has the pdf	

Question #3:

An airport has a counter of three servers and a single waiting line. Passenger arrive at random to the airport for check-in of their luggage. Also, the airport has three run ways for airplanes to land or departing the airport. Answer the following:

- 1. Define the three different entities in the system.
- 2. For each entity in (1) define two attributes.
- 3. Define three different activities in the system.
- 4. Define two state variables for **each entity in (1)**.

Question #4:

Consider the following LCG generator: $Xn = (13 Xn-1 + 13) \mod (16)$, X0 = 14 Answer the following:

- a) Prove that this LCG has Full Period
- b) Generate all possible uniform pseudo-random numbers from the above LCG.

<u>Question #5: (12 points)</u>

п	1	2	3	4	5	6	7	8
<i>U_x(0,1)</i>	0.304	0.696	0.171	0.339	0.981	0.125	0.842	0.656
X								
<i>U_y(0,1)</i>	0.124	0.842	0.304	0.697	0.842	0.172	0.338	0.697
Ŷ								

a) Consider the following probability function:

$$f(x) = \begin{cases} \frac{4}{7}x^3; & 1 \le x \le 2\\ 0; & otherwise \end{cases}$$

Find the inverse transform of the probability and generate random numbers from f(x) using the table of U(0,1) random numbers above.

b) Consider the following probability function:

$$f(y) = \begin{cases} 2e^{2y}; & 0 \le y \\ 0; & otherwise \end{cases}$$

Find the inverse transform of the probability and generate random numbers from f(y) using the table of U(0,1) random numbers above.

c) Consider a car repair workshop. Assume that the variable X is the time in hours until a car is repaired and Y is the time in hours between. Build a flow chart and use your results in (a) and (b) to simulate the system for 8 arriving customers.

Question #6:

High temperature (°F) in a city on July 21, denoted by the random variable X, has the following probability density function, where X is in degrees F.

$$f(x) = \begin{cases} \frac{2(x-85)}{119}, & 85 \le x \le 92\\ \frac{2(102-x)}{170}, & 92 < x \le 102\\ 0, & \text{otherwise} \end{cases}$$

(a) What is the mean of the temperature E(X)?

(b) What is the variance of the temperature V(X)?

(c) What is the probability that the temperature will be between 90° and 100°.

(d) Write the inverse transform for X.

Question #7: (20 points)

Busses arrive to a station at random. It is estimated that the time between busses is an exponential distribution with mean 15 minutes. The number of passengers on the bus is also random follows a binomial distribution with parameter 10 and probability 0.75.

- (1) If you arrive at 10:00 am, What is the probability you will wait more than 30 min for your bus?
- (2) What is the expected number of busses that will arrive to the station between 10:00 to 11:00 am?
- (3) What is the expected number of passengers that will drop off to the station between 10:00 to 11:00 am?
- (4) Given that 15 passengers arrived between 10:00 to 11:00 am what is the probability that the next bus will have 3 passengers on board?
- (5) Draw the flowchart that will simulate the bus arrival and passenger's drop-off to this station? (Use the command "*Generate RV from Dist.*"--- to complete your flowchart)