
Concepts of Programming Languages
Lecture 5 - Syntax

Patrick Donnelly

Montana State University

Spring 2014

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 1 / 23

Administrivia

Assignment:

Programming #1 : due 02.10
Homework #2 : due 02.19

Reading:

Chapter 3

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 2 / 23

A language that is simple to parse for the compiler is also simple to
parse for the human programmer.

N. Wirth (1974)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 3 / 23

Thinking about Syntax

Definition
The syntax of a programming language is a precise description of all
its grammatically correct programs.

Precise syntax was first used with Algol 60, and has been used ever
since.

Three levels:
Lexical syntax
Concrete syntax
Abstract syntax

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 23

Levels of Syntax

Lexical syntax = all the basic symbols of the language (names, values,
operators, etc.)

Concrete syntax = rules for writing expressions, statements and
programs.

Abstract syntax = internal representation of the program, favoring
content over form.

C: if (expr) ...discard ()

Ada: if (expr) then discard then

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 23

Syntax of a Small Language: Clite

Why examine only a subset of C?

Grammar Size for Various Languages

Language Pages Reference

Pascal 5 [Jensen & Wirth, 1975]
C 6 [Kernighan & Richie, 1988]
C++ 22 [Stroustrup, 1997]
Java 14 [Gosling et. al., 1996]

The Clite grammar fits on one page (next few slides),
so it’s a far better tool for studying language design.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 23

Syntax of a Small Language: Clite

Why examine only a subset of C?

Grammar Size for Various Languages

Language Pages Reference

Pascal 5 [Jensen & Wirth, 1975]
C 6 [Kernighan & Richie, 1988]
C++ 22 [Stroustrup, 1997]
Java 14 [Gosling et. al., 1996]

The Clite grammar fits on one page (next few slides),
so it’s a far better tool for studying language design.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 23

Clite Grammar: Statements

Program → int main () { Declarations Statements }

Declarations → { Declaration }

Declaration → Type Identifier [[Integer]]
{ , Identifier [[Integer]] }

Type → int | bool | float | char

Statements → { Statement }

Statement → ; | Block | Assignment |
IfStatement | WhileStatement

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 23

Clite Grammar: Statements

Block → { Statements}

Assignment → Identifier [[Expression]]
= Expression ;

IfStatement → if (Expression) Statement
[else Statement]

WhileStatement → while (Expression) Statement

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 23

Clite Grammar: Expressions

Expression → Conjunction { || Conjunction }

Conjunction → Equality { && Equality }

Equality → Relation [EquOp Relation]

EquOp → == | !=

Relation → Addition [RelOp Addition]

RelOp → < | <= | > | >=

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 23

Clite Grammar: Expressions

Addition → Term { AddOp Term }

AddOp → + | -

Term → Factor { MulOp Factor }

MulOp → * | / | %

Factor → [UnaryOp] Primary

UnaryOp → - | !

Primary → Identifier [[Expression]] | Literal |
(Expression) | Type (Expression)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 23

Clite Grammar: Lexical Level

Identifier → Letter { Letter | Digit }

Letter → a | b | ...| z | A | B | ...| Z

Digit → 0 | 1 | ...| 9

Literal → Integer | Boolean | Float | Char

Integer → Digit { Digit }

Boolean → true | false

Float → Integer . Integer

Char → ‘ASCII Char’

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 23

Issues Not Addressed by this Grammar

1 Comments
2 Whitespace
3 Distinguishing one token <= from two tokens < =
4 Distinguishing identifiers from keywords like if

These issues are addressed by identifying two levels:
lexical level
syntactic level

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 12 / 23

Lexical Syntax
Input : a stream of characters from the ASCII set,
keyed by a programmer.

Output : a stream of tokens or basic symbols,
classified as follows:

Identifiers e.g., Stack, x, i, push

Literals e.g., 123, ’x’, 3.25, true

Keywords bool char else false float if int main true while

Operators = || && == != < <= > >= + - * / !

Punctuation ; , { } ()

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 23

Whitespace

Whitespace is any space, tab, end-of-line character (or characters),
or character sequence inside a comment

No token may contain embedded whitespace
(unless it is a character or string literal)

Example:
>= one token
> = two tokens

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 14 / 23

Whitespace Examples in Pascal

Legal or Illegal?

while a < b do

legal spacing between tokens

whilea < bdo illegal cannot tell boundaries

while a<b do legal spacing not needed for <

whilea<bdo illegal cannot tell boundaries

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 23

Whitespace Examples in Pascal

Legal or Illegal?

while a < b do legal spacing between tokens

whilea < bdo illegal cannot tell boundaries

while a<b do legal spacing not needed for <

whilea<bdo illegal cannot tell boundaries

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 23

Whitespace Examples in Pascal

Legal or Illegal?

while a < b do legal spacing between tokens

whilea < bdo

illegal cannot tell boundaries

while a<b do legal spacing not needed for <

whilea<bdo illegal cannot tell boundaries

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 23

Whitespace Examples in Pascal

Legal or Illegal?

while a < b do legal spacing between tokens

whilea < bdo illegal cannot tell boundaries

while a<b do legal spacing not needed for <

whilea<bdo illegal cannot tell boundaries

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 23

Whitespace Examples in Pascal

Legal or Illegal?

while a < b do legal spacing between tokens

whilea < bdo illegal cannot tell boundaries

while a<b do

legal spacing not needed for <

whilea<bdo illegal cannot tell boundaries

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 23

Whitespace Examples in Pascal

Legal or Illegal?

while a < b do legal spacing between tokens

whilea < bdo illegal cannot tell boundaries

while a<b do legal spacing not needed for <

whilea<bdo illegal cannot tell boundaries

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 23

Whitespace Examples in Pascal

Legal or Illegal?

while a < b do legal spacing between tokens

whilea < bdo illegal cannot tell boundaries

while a<b do legal spacing not needed for <

whilea<bdo

illegal cannot tell boundaries

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 23

Whitespace Examples in Pascal

Legal or Illegal?

while a < b do legal spacing between tokens

whilea < bdo illegal cannot tell boundaries

while a<b do legal spacing not needed for <

whilea<bdo illegal cannot tell boundaries

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 23

Whitespace Examples in Pascal

Legal or Illegal?

while a < b do legal spacing between tokens

whilea < bdo illegal cannot tell boundaries

while a<b do legal spacing not needed for <

whilea<bdo illegal cannot tell boundaries

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 23

Comments

Not defined in grammar

Clite uses // comment style of C++

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 23

Identifier

Sequence of letters and digits, starting with a letter

if is both an identifier and a keyword

Most languages require identifiers to be distinct from keywords

In some languages, identifiers are merely predefined
(and thus can be redefined by the programmer)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 23

Identifier

Redefining Identifiers can be dangerous!

program confusing;

const true = false;

begin

if (a<b) = true then

f(a)

else ...

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 23

Identifier

Should Identifiers be case-sensitive?

Pascal no

Modula yes

C, C++ yes

Java yes

PHP partly yes, partly no

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 23

Concrete Syntax

Based on a parse of its Tokens:

; is a statement terminator

(Algol-60, Pascal use ; as a separator)

Rule for IfStatement is ambiguous:

The else ambiguity is resolved by connecting an else with the last
encountered else-less if. Stroustrup, 1991

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 20 / 23

Expressions in Clite

13 grammar rules

Use of meta braces - operators are left associative

C++ expressions require 4 pages of grammar rules
[Stroustrup]

C uses an ambiguous expression grammar
[Kernighan and Ritchie]

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 21 / 23

Associativity and Precedence

Clite Operator Associativity

Unary - ! none

* / left

+ - left

< <= > >= none

== != none

&& left

|| left

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 23

Clite Equality, Relational Operators

Clite Equality, Relational Operators are non-associative.

(an idea borrowed from Ada)

Why is this important?

In C++, the expression:

if (a < x < b)

is not equivalent to

if (a < x && x < b)

But it is error-free!

So, what does it mean?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 23

Clite Equality, Relational Operators

Clite Equality, Relational Operators are non-associative.

(an idea borrowed from Ada)

Why is this important?

In C++, the expression:

if (a < x < b)

is not equivalent to

if (a < x && x < b)

But it is error-free!

So, what does it mean?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 23

