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Administrivia

Assignment:

Programming #1 : due 02.10
Homework #2 : due 02.19

Reading:

Chapter 3
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A language that is simple to parse for the compiler is also simple to
parse for the human programmer.

N. Wirth (1974)
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Thinking about Syntax

Definition
The syntax of a programming language is a precise description of all
its grammatically correct programs.

Precise syntax was first used with Algol 60, and has been used ever
since.

Three levels:
Lexical syntax
Concrete syntax
Abstract syntax
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Levels of Syntax

Lexical syntax = all the basic symbols of the language (names, values,
operators, etc.)

Concrete syntax = rules for writing expressions, statements and
programs.

Abstract syntax = internal representation of the program, favoring
content over form.

C: if ( expr ) ...discard ( )

Ada: if ( expr ) then discard then
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Syntax of a Small Language: Clite

Why examine only a subset of C?

Grammar Size for Various Languages

Language Pages Reference

Pascal 5 [Jensen & Wirth, 1975]
C 6 [Kernighan & Richie, 1988]
C++ 22 [Stroustrup, 1997]
Java 14 [Gosling et. al., 1996]

The Clite grammar fits on one page (next few slides),
so it’s a far better tool for studying language design.
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Clite Grammar: Statements

Program → int main ( ) { Declarations Statements }

Declarations → { Declaration }

Declaration → Type Identifier [ [ Integer ] ]
{ , Identifier [ [ Integer ] ] }

Type → int | bool | float | char

Statements → { Statement }

Statement → ; | Block | Assignment |
IfStatement | WhileStatement
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Clite Grammar: Statements

Block → { Statements}

Assignment → Identifier [ [ Expression ] ]
= Expression ;

IfStatement → if ( Expression ) Statement
[ else Statement ]

WhileStatement → while ( Expression ) Statement
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Clite Grammar: Expressions

Expression → Conjunction { || Conjunction }

Conjunction → Equality { && Equality }

Equality → Relation [ EquOp Relation ]

EquOp → == | !=

Relation → Addition [ RelOp Addition ]

RelOp → < | <= | > | >=

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 23



Clite Grammar: Expressions

Addition → Term { AddOp Term }

AddOp → + | -

Term → Factor { MulOp Factor }

MulOp → * | / | %

Factor → [ UnaryOp ] Primary

UnaryOp → - | !

Primary → Identifier [ [ Expression ] ] | Literal |
( Expression ) | Type ( Expression )
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Clite Grammar: Lexical Level

Identifier → Letter { Letter | Digit }

Letter → a | b | ...| z | A | B | ...| Z

Digit → 0 | 1 | ...| 9

Literal → Integer | Boolean | Float | Char

Integer → Digit { Digit }

Boolean → true | false

Float → Integer . Integer

Char → ‘ASCII Char’
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Issues Not Addressed by this Grammar

1 Comments
2 Whitespace
3 Distinguishing one token <= from two tokens < =
4 Distinguishing identifiers from keywords like if

These issues are addressed by identifying two levels:
lexical level
syntactic level
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Lexical Syntax
Input : a stream of characters from the ASCII set,
keyed by a programmer.

Output : a stream of tokens or basic symbols,
classified as follows:

Identifiers e.g., Stack, x, i, push

Literals e.g., 123, ’x’, 3.25, true

Keywords bool char else false float if int main true while

Operators = || && == != < <= > >= + - * / !

Punctuation ; , { } ( )
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Whitespace

Whitespace is any space, tab, end-of-line character (or characters),
or character sequence inside a comment

No token may contain embedded whitespace
(unless it is a character or string literal)

Example:
>= one token
> = two tokens
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Whitespace Examples in Pascal

Legal or Illegal?

while a < b do

legal spacing between tokens

whilea < bdo illegal cannot tell boundaries

while a<b do legal spacing not needed for <

whilea<bdo illegal cannot tell boundaries
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Comments

Not defined in grammar

Clite uses // comment style of C++
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Identifier

Sequence of letters and digits, starting with a letter

if is both an identifier and a keyword

Most languages require identifiers to be distinct from keywords

In some languages, identifiers are merely predefined
(and thus can be redefined by the programmer)
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Identifier

Redefining Identifiers can be dangerous!

program confusing;

const true = false;

begin

if (a<b) = true then

f(a)

else ...
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Identifier

Should Identifiers be case-sensitive?

Pascal no

Modula yes

C, C++ yes

Java yes

PHP partly yes, partly no

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 23



Concrete Syntax

Based on a parse of its Tokens:

; is a statement terminator

(Algol-60, Pascal use ; as a separator)

Rule for IfStatement is ambiguous:

The else ambiguity is resolved by connecting an else with the last
encountered else-less if. Stroustrup, 1991
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Expressions in Clite

13 grammar rules

Use of meta braces - operators are left associative

C++ expressions require 4 pages of grammar rules
[Stroustrup]

C uses an ambiguous expression grammar
[Kernighan and Ritchie]
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Associativity and Precedence

Clite Operator Associativity

Unary - ! none

* / left

+ - left

< <= > >= none

== != none

&& left

|| left
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Clite Equality, Relational Operators

Clite Equality, Relational Operators are non-associative.

(an idea borrowed from Ada)

Why is this important?

In C++, the expression:

if (a < x < b)

is not equivalent to

if (a < x && x < b)

But it is error-free!

So, what does it mean?
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