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Administrivia

Assignments:

Assignment #2 : due 02.19

Reading:

(Skip – Chapter 4)
Chapter 5
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The first step toward wisdom is calling things by their right names.

Anonymous Chinese Proverb
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Variables

Variables can be characterized as a sextuple of attributes:

Name

Address

Value

Type

Scope

Lifetime
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Names

Not all variables have them (e.g., Perl)

Variables are characterized by attributes:
To design a type, must consider scope, lifetime, type checking,
initialization, and type compatibility

Design issues for names:
Are names case sensitive?
Are special words reserved words or keywords?
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Name Length

If too short, they cannot be connotative

Language examples:

FORTRAN 95: maximum of 31
C99: no limit but only the first 63 are significant; also, external
names are limited to a maximum of 31

C#, Ada, and Java: no limit, and all are significant

C++: no limit, but implementers often impose one
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Special Names

PHP: all variable names must begin with dollar signs

Perl: all variable names begin with special characters, which specify
the variable’s type

Ruby: variable names that begin with @ are instance variables; those
that begin with @@ are class variables
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Case Sensitivity

Disadvantage: readability (names that look alike are different)

Names in the C-based languages are case sensitive

Names in others are not: e.g., COBOL, Fortran, Basic, Pascal

Worse in C++, Java, and C# because predefined names are
mixed case (e.g. IndexOutOfBoundsException)
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Special Words

Definition
A keyword is a word that is special only in certain contexts.

An aid to readability; used to delimit or separate statement clauses

A reserved word is a special word that cannot be used as a
user-defined name

Usually identify major constructs: if while switch
or predefined identifiers: e.g., library routines

Potential problem with reserved words: If there are too many, many
collisions occur (e.g., COBOL has 300 reserved words!)
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Variables

Variables can be characterized as a sextuple of attributes:

Name

Address

Value

Type

Scope

Lifetime
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Address
Definition
Address is the memory address with which it is associated

Each variable is associated with a memory address

A variable may have different addresses at different times during
execution

A variable may have different addresses at different places in a
program

If two variable names can be used to access the same memory
location, they are called aliases

Aliases are created via pointers, reference variables, C and C++
unions
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Binding

Definition
The term binding is an association between an entity (such as a
variable) and a property (such as its value).

Name bindings play a fundamental role.

The lifetime of a variable name refers to the time interval during which
memory is allocated.
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Possible Binding Times

Language design time – bind operator symbols to operations

Language implementation time – bind floating point type to a
representation

Compile time – bind a variable to a type in C or Java

Load time – bind a C or C++ static variable to a memory cell)

Runtime – bind a nonstatic local variable to a memory cell
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Binding Time

Definition
Binding time is the time at which a binding takes place.

Definition
A binding is static if the association occurs before run-time and
remains unchanged throughout program execution.

Definition
A binding is dynamic if the association occurs at run-time or can
change during execution of the program.
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Variables

Variables can be characterized as a sextuple of attributes:

Name

Address

Value

Type

Scope

Lifetime
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Value
Definition
Value is the contents of the location with which the variable is
associated

L-value - use of a variable name to denote its address.

Ex: x = . . .

R-value - use of a variable name to denote its value.

Ex: . . . = . . . x . . .

Some languages support/require explicit dereferencing.

Ex: x := !y + 1
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Pointer Example

The unary star * deferences a pointer variable.

Pointer Example
int x, y;
int *p;
x = *p;

*p = y;

What is happening in this statement?
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Variables

Variables can be characterized as a sextuple of attributes:

Name

Address

Value

Type - we will cover in separate lecture

Scope

Lifetime
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Scope

Definition
The scope of a name is the collection of statements which can access
the name binding.

Definition
In static scoping, a name is bound to a collection of statements
according to its position in the source program.

Most modern languages use static (or lexical) scoping.

Two different scopes are either nested or disjoint .

In disjoint scopes, same name can be bound to different entities
without interference.
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Scope

What constitutes a scope?

Algol C Java Ada

Package n/a n/a yes yes

Class n/a n/a nested yes

Function nested yes yes nested

Block nested nested nested nested

For Loop no no yes automatic
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Scope

Definition
The scope in which a name is defined or delared is called its defining
scope

Definition
A reference to a name is nonlocal if it occurs in a nested scope of the
defining scope; otherwise, it is local
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Example Scope in C

1 void sort (float a[ ], int size) {
2 int i, j;
3 for (i = 0; i < size; i++)
4 for (j = i + 1; j < size; j++)
5 if (a[j] < a[i]) {
6 float t;
7 t = a[i];
8 a[i] = a[j];
9 a[j] = t;
10 }
11 }
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Example Scope in C

1 for (int i = 0; i < 10; i++) {
2 System.out.println(i);
3 ...
10 }

...

20 System.out.println(i);

Invalid Reference to i!
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Scope

Definition
A symbol table is a data structure kept by a translator that allows it to
keep track of each declared name and its binding.

Assume for now that each name is unique within its local scope.

The data structure can be any implementation of a dictionary, where
the name is the key.
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Symbol Table

1 Each time a scope is entered, push a new dictionary onto the
stack.

2 Each time a scope is exited, pop a dictionary off the top of the
stack.

3 For each name declared, generate an appropriate binding and
enter the name-binding pair into the dictionary on the top of the
stack.

4 Given a name reference, search the dictionary on top of the stack:

(a) If found, return the binding.

(b) Otherwise, repeat the process on the next dictionary down in the
stack.

(c) If the name is not found in any dictionary, report an error.
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Example Scope in C

1 void sort (float a[ ], int size) {
2 int i, j;
3 for (i = 0; i < size; i++)
4 for (j = i + 1; j < size; j++)
5 if (a[j] < a[i]) {
6 float t;
7 t = a[i];
8 a[i] = a[j];
9 a[j] = t;
10 }
11 }

Stack of dictionaries at line :
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6 float t;
7 t = a[i];
8 a[i] = a[j];
9 a[j] = t;
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11 }

Stack of dictionaries at line 7:

<t, 6>
<j, 4> <i, 3> <size,1> <a, 1>
<sort, 1>
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Example Scope in C
1 void sort (float a[ ], int size) {
2 int i, j;
3 for (i = 0; i < size; i++)
4 for (j = i + 1; j < size; j++)
5 if (a[j] < a[i]) {
6 float t;
7 t = a[i];
8 a[i] = a[j];
9 a[j] = t;
10 }
11 }

Stack of dictionaries at line 4 and 11:

<j, 4> <i, 3> <size,1> <a, 1>
<sort, 1>
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Resolving References

Definition
For static scoping, the referencing environment for a name is its
defining scope and all nested subscopes.

The referencing environment defines the set of statements which can
validly reference a name.
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Resolving References

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2 * w;
5 w = w + 1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }
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Resolving References

1 int h, i;

1 Outer scope: <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

2 Function B: <w, 2> <j, 3> <k, 3>

3 Function A: <x, 8> <y, 8> <i, 9> <j, 9>

4 Function main: <a, 15> <b, 15>
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Resolving References

8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

1 Outer scope: <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

2 Function B: <w, 2> <j, 3> <k, 3>

3 Function A: <x, 8> <y, 8> <i, 9> <j, 9>
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Resolving References

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

1 Outer scope: <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

2 Function B: <w, 2> <j, 3> <k, 3>

3 Function A: <x, 8> <y, 8> <i, 9> <j, 9>

4 Function main: <a, 15> <b, 15>

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 46



Resolving References

2 void B(int w) {
3 int j, k;
4 i = 2 * w;
5 w = w + 1;
6 ...
7 }

Symbol Table Stack for Function B:

<w, 2> <j, 3> <k, 3>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>
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Resolving References

8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

Symbol Table Stack for Function A:

<x, 8> <y, 8> <i, 9> <j, 9>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>
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Resolving References

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

Symbol Table Stack for Function main:

<a, 15> <b, 15>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>
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Resolving References

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2 * w;
5 w = w + 1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

Line Ref Decl
4 i 1
10 h 1
11 i 9
16 h 1
18 h 1
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Dynamic Scoping

Definition
In dynamic scoping, a name is bound to its most recent declaration
based on the program’s call history.

Used by early Lisp, APL, Snobol, Perl.

Symbol table for each scope built at compile time, but managed at run
time.

Scope pushed/popped on stack when entered/exited.
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Dynamic Scoping

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2 * w;
5 w = w + 1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }
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Dynamic Scoping

Call history :

main (17) → A (10) → B

Function Dictionary

B <w, 2> <j, 3> <k, 3>

A <x, 8> <y, 8> <i, 9> <j, 9>

main <a, 15> <b, 15>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Reference to i (4) resolves to <i, 9> in A.
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7 }
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Dynamic Scoping

Call history :

main (18) → B

Function Dictionary

B <w, 2> <j, 3> <k, 3>

main <a, 15> <b, 15>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Reference to i (4) resolves to <i, 1> in global scope.
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Visibility

Definition
A name is visible if its referencing environment includes the reference
and the name is not redeclared in an inner scope.

Definition
A name redeclared in an inner scope effectively hides the outer
declaration.

Some languages provide a mechanism for referencing a hidden name;
e.g.: this.x in C++/Java.
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Visibility

1 public class Student {
2 private String name;
3 public Student (String name, ...) {
4 this.name = name;
5 ...
6 }
7 }
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Ada Program

procedure Main is
x : Integer;
procedure p1 is

x : Float;
procedure p2 is
begin

...x ...
end p2;

begin
...x ...

end p1;
procedure p3 is
begin

...x ...
end p3;

begin
...x ...

end main;

x in p2?

x in p1?

x in p3?

x in Main?
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Overloading

Definition
Overloading uses the number or type of parameters to distinguish
among identical function names or operators.

Examples:

+, -, *, / can be float or int

+ can be float or int addition or string concatenation in Java

System.out.print(x) in Java
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Overloading

Modula: library functions

Read( ) for characters

ReadReal( ) for floating point

ReadInt( ) for integers

ReadString( ) for strings
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Overloading

public class PrintStream extends FilterOutputStream {
...
public void print(boolean b);
public void print(char c);
public void print(int i);
public void print(long l);
public void print(float f);
public void print(double d);
public void print(char[ ] s);
public void print(String s);
public void print(Object obj);

}
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Variables

Variables can be characterized as a sextuple of attributes:

Name

Address

Value

Type

Scope

Lifetime
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Lifetime

Definition
The lifetime of a variable is the time interval during which the variable
has been allocated a block of memory.

Earliest languages used static allocation.

Algol introduced the notion that memory should be
allocated/deallocated at scope entry/exit.

Remainder of section considers mechanisms which break scope
equals lifetime rule.
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Lifetime

C:

Global compilation scope: static

Explicitly declaring a variable static

Java also allows a variable to be declared static
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