
Concepts of Programming Languages
Lecture 07 - Names

Patrick Donnelly

Montana State University

Spring 2014

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 1 / 46

Administrivia

Assignments:

Assignment #2 : due 02.19

Reading:

(Skip – Chapter 4)
Chapter 5

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 2 / 46

The first step toward wisdom is calling things by their right names.

Anonymous Chinese Proverb

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 3 / 46

Variables

Variables can be characterized as a sextuple of attributes:

Name

Address

Value

Type

Scope

Lifetime

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 46

Variables

Variables can be characterized as a sextuple of attributes:

Name

Address

Value

Type

Scope

Lifetime

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 46

Names

Not all variables have them (e.g., Perl)

Variables are characterized by attributes:
To design a type, must consider scope, lifetime, type checking,
initialization, and type compatibility

Design issues for names:
Are names case sensitive?
Are special words reserved words or keywords?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 46

Name Length

If too short, they cannot be connotative

Language examples:

FORTRAN 95: maximum of 31
C99: no limit but only the first 63 are significant; also, external
names are limited to a maximum of 31

C#, Ada, and Java: no limit, and all are significant

C++: no limit, but implementers often impose one

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 46

Special Names

PHP: all variable names must begin with dollar signs

Perl: all variable names begin with special characters, which specify
the variable’s type

Ruby: variable names that begin with @ are instance variables; those
that begin with @@ are class variables

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 46

Case Sensitivity

Disadvantage: readability (names that look alike are different)

Names in the C-based languages are case sensitive

Names in others are not: e.g., COBOL, Fortran, Basic, Pascal

Worse in C++, Java, and C# because predefined names are
mixed case (e.g. IndexOutOfBoundsException)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 46

Special Words

Definition
A keyword is a word that is special only in certain contexts.

An aid to readability; used to delimit or separate statement clauses

A reserved word is a special word that cannot be used as a
user-defined name

Usually identify major constructs: if while switch
or predefined identifiers: e.g., library routines

Potential problem with reserved words: If there are too many, many
collisions occur (e.g., COBOL has 300 reserved words!)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 46

Variables

Variables can be characterized as a sextuple of attributes:

Name

Address

Value

Type

Scope

Lifetime

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 46

Address
Definition
Address is the memory address with which it is associated

Each variable is associated with a memory address

A variable may have different addresses at different times during
execution

A variable may have different addresses at different places in a
program

If two variable names can be used to access the same memory
location, they are called aliases

Aliases are created via pointers, reference variables, C and C++
unions

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 46

Binding

Definition
The term binding is an association between an entity (such as a
variable) and a property (such as its value).

Name bindings play a fundamental role.

The lifetime of a variable name refers to the time interval during which
memory is allocated.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 12 / 46

Possible Binding Times

Language design time – bind operator symbols to operations

Language implementation time – bind floating point type to a
representation

Compile time – bind a variable to a type in C or Java

Load time – bind a C or C++ static variable to a memory cell)

Runtime – bind a nonstatic local variable to a memory cell

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 46

Binding Time

Definition
Binding time is the time at which a binding takes place.

Definition
A binding is static if the association occurs before run-time and
remains unchanged throughout program execution.

Definition
A binding is dynamic if the association occurs at run-time or can
change during execution of the program.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 14 / 46

Variables

Variables can be characterized as a sextuple of attributes:

Name

Address

Value

Type

Scope

Lifetime

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 46

Value
Definition
Value is the contents of the location with which the variable is
associated

L-value - use of a variable name to denote its address.

Ex: x = . . .

R-value - use of a variable name to denote its value.

Ex: . . . = . . . x . . .

Some languages support/require explicit dereferencing.

Ex: x := !y + 1

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 46

Pointer Example

The unary star * deferences a pointer variable.

Pointer Example
int x, y;
int *p;
x = *p;

*p = y;

What is happening in this statement?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 46

Variables

Variables can be characterized as a sextuple of attributes:

Name

Address

Value

Type - we will cover in separate lecture

Scope

Lifetime

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 46

Variables

Variables can be characterized as a sextuple of attributes:

Name

Address

Value

Type

Scope

Lifetime

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 46

Scope

Definition
The scope of a name is the collection of statements which can access
the name binding.

Definition
In static scoping, a name is bound to a collection of statements
according to its position in the source program.

Most modern languages use static (or lexical) scoping.

Two different scopes are either nested or disjoint .

In disjoint scopes, same name can be bound to different entities
without interference.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 20 / 46

Scope

What constitutes a scope?

Algol C Java Ada

Package n/a n/a yes yes

Class n/a n/a nested yes

Function nested yes yes nested

Block nested nested nested nested

For Loop no no yes automatic

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 21 / 46

Scope

Definition
The scope in which a name is defined or delared is called its defining
scope

Definition
A reference to a name is nonlocal if it occurs in a nested scope of the
defining scope; otherwise, it is local

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 46

Example Scope in C

1 void sort (float a[], int size) {
2 int i, j;
3 for (i = 0; i < size; i++)
4 for (j = i + 1; j < size; j++)
5 if (a[j] < a[i]) {
6 float t;
7 t = a[i];
8 a[i] = a[j];
9 a[j] = t;
10 }
11 }

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 46

Example Scope in C

1 for (int i = 0; i < 10; i++) {
2 System.out.println(i);
3 ...
10 }

...

20 System.out.println(i);

Invalid Reference to i!

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 24 / 46

Example Scope in C

1 for (int i = 0; i < 10; i++) {
2 System.out.println(i);
3 ...
10 }

...

20 System.out.println(i);

Invalid Reference to i!

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 24 / 46

Scope

Definition
A symbol table is a data structure kept by a translator that allows it to
keep track of each declared name and its binding.

Assume for now that each name is unique within its local scope.

The data structure can be any implementation of a dictionary, where
the name is the key.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 25 / 46

Symbol Table

1 Each time a scope is entered, push a new dictionary onto the
stack.

2 Each time a scope is exited, pop a dictionary off the top of the
stack.

3 For each name declared, generate an appropriate binding and
enter the name-binding pair into the dictionary on the top of the
stack.

4 Given a name reference, search the dictionary on top of the stack:

(a) If found, return the binding.

(b) Otherwise, repeat the process on the next dictionary down in the
stack.

(c) If the name is not found in any dictionary, report an error.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 46

Symbol Table

1 Each time a scope is entered, push a new dictionary onto the
stack.

2 Each time a scope is exited, pop a dictionary off the top of the
stack.

3 For each name declared, generate an appropriate binding and
enter the name-binding pair into the dictionary on the top of the
stack.

4 Given a name reference, search the dictionary on top of the stack:

(a) If found, return the binding.

(b) Otherwise, repeat the process on the next dictionary down in the
stack.

(c) If the name is not found in any dictionary, report an error.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 46

Symbol Table

1 Each time a scope is entered, push a new dictionary onto the
stack.

2 Each time a scope is exited, pop a dictionary off the top of the
stack.

3 For each name declared, generate an appropriate binding and
enter the name-binding pair into the dictionary on the top of the
stack.

4 Given a name reference, search the dictionary on top of the stack:

(a) If found, return the binding.

(b) Otherwise, repeat the process on the next dictionary down in the
stack.

(c) If the name is not found in any dictionary, report an error.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 46

Symbol Table

1 Each time a scope is entered, push a new dictionary onto the
stack.

2 Each time a scope is exited, pop a dictionary off the top of the
stack.

3 For each name declared, generate an appropriate binding and
enter the name-binding pair into the dictionary on the top of the
stack.

4 Given a name reference, search the dictionary on top of the stack:

(a) If found, return the binding.

(b) Otherwise, repeat the process on the next dictionary down in the
stack.

(c) If the name is not found in any dictionary, report an error.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 46

Symbol Table

1 Each time a scope is entered, push a new dictionary onto the
stack.

2 Each time a scope is exited, pop a dictionary off the top of the
stack.

3 For each name declared, generate an appropriate binding and
enter the name-binding pair into the dictionary on the top of the
stack.

4 Given a name reference, search the dictionary on top of the stack:

(a) If found, return the binding.

(b) Otherwise, repeat the process on the next dictionary down in the
stack.

(c) If the name is not found in any dictionary, report an error.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 46

Symbol Table

1 Each time a scope is entered, push a new dictionary onto the
stack.

2 Each time a scope is exited, pop a dictionary off the top of the
stack.

3 For each name declared, generate an appropriate binding and
enter the name-binding pair into the dictionary on the top of the
stack.

4 Given a name reference, search the dictionary on top of the stack:

(a) If found, return the binding.

(b) Otherwise, repeat the process on the next dictionary down in the
stack.

(c) If the name is not found in any dictionary, report an error.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 46

Symbol Table

1 Each time a scope is entered, push a new dictionary onto the
stack.

2 Each time a scope is exited, pop a dictionary off the top of the
stack.

3 For each name declared, generate an appropriate binding and
enter the name-binding pair into the dictionary on the top of the
stack.

4 Given a name reference, search the dictionary on top of the stack:

(a) If found, return the binding.

(b) Otherwise, repeat the process on the next dictionary down in the
stack.

(c) If the name is not found in any dictionary, report an error.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 46

Example Scope in C

1 void sort (float a[], int size) {
2 int i, j;
3 for (i = 0; i < size; i++)
4 for (j = i + 1; j < size; j++)
5 if (a[j] < a[i]) {
6 float t;
7 t = a[i];
8 a[i] = a[j];
9 a[j] = t;
10 }
11 }

Stack of dictionaries at line :

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 27 / 46

Example Scope in C
1 void sort (float a[], int size) {
2 int i, j;
3 for (i = 0; i < size; i++)
4 for (j = i + 1; j < size; j++)
5 if (a[j] < a[i]) {
6 float t;
7 t = a[i];
8 a[i] = a[j];
9 a[j] = t;
10 }
11 }

Stack of dictionaries at line 7:

<t, 6>
<j, 4> <i, 3> <size,1> <a, 1>
<sort, 1>

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 27 / 46

Example Scope in C
1 void sort (float a[], int size) {
2 int i, j;
3 for (i = 0; i < size; i++)
4 for (j = i + 1; j < size; j++)
5 if (a[j] < a[i]) {
6 float t;
7 t = a[i];
8 a[i] = a[j];
9 a[j] = t;
10 }
11 }

Stack of dictionaries at line 4 and 11:

<j, 4> <i, 3> <size,1> <a, 1>
<sort, 1>

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 27 / 46

Resolving References

Definition
For static scoping, the referencing environment for a name is its
defining scope and all nested subscopes.

The referencing environment defines the set of statements which can
validly reference a name.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 28 / 46

Resolving References

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2 * w;
5 w = w + 1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 29 / 46

Resolving References

1 int h, i;

1 Outer scope: <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

2 Function B: <w, 2> <j, 3> <k, 3>

3 Function A: <x, 8> <y, 8> <i, 9> <j, 9>

4 Function main: <a, 15> <b, 15>

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 46

Resolving References

2 void B(int w) {
3 int j, k;
4 i = 2 * w;
5 w = w + 1;
6 ...
7 }

1 Outer scope: <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

2 Function B: <w, 2> <j, 3> <k, 3>

3 Function A: <x, 8> <y, 8> <i, 9> <j, 9>

4 Function main: <a, 15> <b, 15>

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 46

Resolving References

8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

1 Outer scope: <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

2 Function B: <w, 2> <j, 3> <k, 3>

3 Function A: <x, 8> <y, 8> <i, 9> <j, 9>

4 Function main: <a, 15> <b, 15>

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 46

Resolving References

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

1 Outer scope: <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

2 Function B: <w, 2> <j, 3> <k, 3>

3 Function A: <x, 8> <y, 8> <i, 9> <j, 9>

4 Function main: <a, 15> <b, 15>

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 46

Resolving References

2 void B(int w) {
3 int j, k;
4 i = 2 * w;
5 w = w + 1;
6 ...
7 }

Symbol Table Stack for Function B:

<w, 2> <j, 3> <k, 3>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 31 / 46

Resolving References

8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

Symbol Table Stack for Function A:

<x, 8> <y, 8> <i, 9> <j, 9>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 31 / 46

Resolving References

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

Symbol Table Stack for Function main:

<a, 15> <b, 15>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 31 / 46

Resolving References

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2 * w;
5 w = w + 1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

Line Ref Decl
4 i 1
10 h 1
11 i 9
16 h 1
18 h 1

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 32 / 46

Dynamic Scoping

Definition
In dynamic scoping, a name is bound to its most recent declaration
based on the program’s call history.

Used by early Lisp, APL, Snobol, Perl.

Symbol table for each scope built at compile time, but managed at run
time.

Scope pushed/popped on stack when entered/exited.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 33 / 46

Dynamic Scoping

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2 * w;
5 w = w + 1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 34 / 46

Dynamic Scoping

Call history :

main (17) → A (10) → B

Function Dictionary

B <w, 2> <j, 3> <k, 3>

A <x, 8> <y, 8> <i, 9> <j, 9>

main <a, 15> <b, 15>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Reference to i (4) resolves to <i, 9> in A.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 35 / 46

Dynamic Scoping

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2 * w;
5 w = w + 1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 36 / 46

Dynamic Scoping

Call history :

main (18) → B

Function Dictionary

B <w, 2> <j, 3> <k, 3>

main <a, 15> <b, 15>
<h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Reference to i (4) resolves to <i, 1> in global scope.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 37 / 46

Visibility

Definition
A name is visible if its referencing environment includes the reference
and the name is not redeclared in an inner scope.

Definition
A name redeclared in an inner scope effectively hides the outer
declaration.

Some languages provide a mechanism for referencing a hidden name;
e.g.: this.x in C++/Java.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 38 / 46

Visibility

1 public class Student {
2 private String name;
3 public Student (String name, ...) {
4 this.name = name;
5 ...
6 }
7 }

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 39 / 46

Ada Program

procedure Main is
x : Integer;
procedure p1 is

x : Float;
procedure p2 is
begin

...x ...
end p2;

begin
...x ...

end p1;
procedure p3 is
begin

...x ...
end p3;

begin
...x ...

end main;

x in p2?

x in p1?

x in p3?

x in Main?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 46

Ada Program

procedure Main is
x : Integer;
procedure p1 is

x : Float;
procedure p2 is
begin

...x ...
end p2;

begin
...x ...

end p1;
procedure p3 is
begin

...x ...
end p3;

begin
...x ...

end main;

x in p2?

x in p1?

x in p3?

x in Main?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 46

Ada Program

procedure Main is
x : Integer;
procedure p1 is

x : Float;
procedure p2 is
begin

...x ...
end p2;

begin
...x ...

end p1;
procedure p3 is
begin

...x ...
end p3;

begin
...x ...

end main;

x in p2?

x in p1?

x in p3?

x in Main?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 46

Ada Program

procedure Main is
x : Integer;
procedure p1 is

x : Float;
procedure p2 is
begin

...x ...
end p2;

begin
...x ...

end p1;
procedure p3 is
begin

...x ...
end p3;

begin
...x ...

end main;

x in p2?

x in p1?

x in p3?

x in Main?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 46

Ada Program

procedure Main is
x : Integer;
procedure p1 is

x : Float;
procedure p2 is
begin

...x ...
end p2;

begin
...x ...

end p1;
procedure p3 is
begin

...x ...
end p3;

begin
...x ...

end main;

x in p2?

x in p1?

x in p3?

x in Main?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 46

Ada Program

procedure Main is
x : Integer;
procedure p1 is

x : Float;
procedure p2 is
begin

...x ...
end p2;

begin
...x ...

end p1;
procedure p3 is
begin

...x ...
end p3;

begin
...x ...

end main;

x in p2?

x in p1?

x in p3?

x in Main?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 46

Ada Program

procedure Main is
x : Integer;
procedure p1 is

x : Float;
procedure p2 is
begin

...x ...
end p2;

begin
...x ...

end p1;
procedure p3 is
begin

...x ...
end p3;

begin
...x ...

end main;

x in p2?

x in p1?

x in p3?

x in Main?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 46

Ada Program

procedure Main is
x : Integer;
procedure p1 is

x : Float;
procedure p2 is
begin

...x ...
end p2;

begin
...x ...

end p1;
procedure p3 is
begin

...x ...
end p3;

begin
...x ...

end main;

x in p2?

x in p1?

x in p3?

x in Main?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 46

Overloading

Definition
Overloading uses the number or type of parameters to distinguish
among identical function names or operators.

Examples:

+, -, *, / can be float or int

+ can be float or int addition or string concatenation in Java

System.out.print(x) in Java

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 41 / 46

Overloading

Modula: library functions

Read() for characters

ReadReal() for floating point

ReadInt() for integers

ReadString() for strings

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 42 / 46

Overloading

public class PrintStream extends FilterOutputStream {
...
public void print(boolean b);
public void print(char c);
public void print(int i);
public void print(long l);
public void print(float f);
public void print(double d);
public void print(char[] s);
public void print(String s);
public void print(Object obj);

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 43 / 46

Variables

Variables can be characterized as a sextuple of attributes:

Name

Address

Value

Type

Scope

Lifetime

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 44 / 46

Lifetime

Definition
The lifetime of a variable is the time interval during which the variable
has been allocated a block of memory.

Earliest languages used static allocation.

Algol introduced the notion that memory should be
allocated/deallocated at scope entry/exit.

Remainder of section considers mechanisms which break scope
equals lifetime rule.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 45 / 46

Lifetime

C:

Global compilation scope: static

Explicitly declaring a variable static

Java also allows a variable to be declared static

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 46 / 46

