

King Saud University

Journal of Saudi Chemical Society

www.ksu.edu.sa www.sciencedirect.com

ORIGINAL ARTICLE

In silico studies on phytochemicals to combat the emerging COVID-19 infection

Mohnad Abdalla^a, Ranjan K. Mohapatra^{b,*}, Ashish K. Sarangi^c, Pranab K. Mohapatra^d, Wafa Ali Eltayb^e, Mahboob Alam^{f,*}, Amr Ahmed El-Arabey^g, Mohammad Azam^{h,*}, Saud I. Al-Resayes^h, Veronique Seidel^{i,*}, Kuldeep Dhama^j

- ^a Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences,
- Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province 250012, PR China
- ^b Department of Chemistry, Government College of Engineering, Keonjhar, Odisha 758002, India
- ^c Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
- ^d Department of Chemistry, C. V. Raman Global University, Bidyanagar, Mahura, Janla, Bhubaneswar, Odisha 752054, India
- ^e Biotechnology Department, Faculty of Science and Technology, Shendi University, Shendi, Nher Anile, Sudan
- ^f Division of Chemistry and Biotechnology, Dongguk University, 123 Dongdae-ro, Gyeongju, Republic of Korea
- ^g Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- ^h Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh 11451, Saudi Arabia

ⁱ Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK

^j Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India

Received 27 July 2021; revised 30 September 2021; accepted 4 October 2021 Available online 19 October 2021

KEYWORDS

COVID-19; DFT; Molecular docking; Molecular dynamics simulation; Pharmacokinetic study; QSAR **Abstract** The current COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants, remains a serious health hazard globally. The SARS-CoV-2 Mpro and spike proteins, as well as the human ACE2 receptor, have previously been reported as good targets for the development of new drug leads to combat COVID-19. Various ligands, including synthetic and plant-derived small molecules, can interact with the aforementioned proteins. In this study, we investigated the interaction of eight phytochemicals, from selected medicinal plants (*Aegle marmelos, Azadirachta indica*, and Ocimum sanctum) commonly used in Indian traditional medicine, with SARS-CoV-2 Mpro (PDBID: 6LU7), SARS-CoV-2S spike protein (PDB

* Corresponding authors.

Peer review under responsibility of King Saud University.

https://doi.org/10.1016/j.jscs.2021.101367

1319-6103 © 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: ranjank_mohapatra@yahoo.com (R.K. Mohapatra), mahboobchem@gmail.com (M. Alam), azam_res@yahoo.com (M. Azam), veronique.seidel@strath.ac.uk (V. Seidel).