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Two-photon bound–bound atomic transitions induced by LG beams 
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A B S T R A C T   

We report theoretical results for the transition amplitudes of two-photon transitions induced in a one-active- 
electron atomic system by a LG10 beam. We identify the excitation pathways for selected two-photon transi
tions starting from the ground state of the atomic system. We numerically evaluate these two-photon transition 
matrix elements for selected transitions in Ca+ employing the truncated summation method. We provide a 
comparison with corresponding transitions induced by a Gaussian beam and present an estimation of the relative 
strength when the two different types of light beams are employed.   

Introduction 

The polarization state of light waves was long ago recognized to be 
directly related to the optical Spin Angular Momentum (SAM) of elec
tromagnetic waves In 1992, it was discovered that light possesses 
quantized Orbital Angular Momentum (OAM) by Allen et al [1] who 
demonstrated it in the laboratory by generating OAM-carrying light 
beams. Subsequently, intensive experimental and theoretical research, 
developed further and deepened the understanding of this concept, in 
addition to the development of many applications [2–6], like optical 
tweezers as a mechanical application [7–12], quantum communications 
and quantum cryptography [13–15], micro-manipulation [16], and 
spiral phase contrast imaging [17–19]. The ability to couple the OAM of 
light to the internal degrees of freedom of an atom was unambiguously 
and meticulously confirmed experimentally by Schmiegelow et al 
[20,21]. 

Laguerre-Gaussian beams 

Laguerre-Gaussian (LG) beams are an explicit demonstration of the 
OAM-carrying helical phase-fronts beams [3,22]. There are a number of 
other families of OAM-carrying beams [23–27]. In this work, we will be 
dealing only with LG beams. 

LG beams are a family of solutions to the paraxial wave equation and 
their amplitude is given by [28] 

uLG
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p

w(z)
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2
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where uLG
lp is written in cylindrical coordinates (ρ,φ, z), l ∈ Z and p ∈

N0 are the azimuthal and radial integer indices, respectively, w(z) =
w0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + z2/z2

R

√
is the usual beam radius at z , such that zR = πw2

0/λ is the 
Rayleigh range, and w0 is the beam waist at z = 0. L|l|

p is the associated 

Laguerre polynomial, c|l|p is the constant of normalization and (2p + l +

1)arctan
(

z
zR

)
is the Gouy phase. 

The LG mode with l = 0 and p = 0 (Gaussian) is shown in Fig. 1(a). 
For l ∕= 0 and p = 0 the light intensity of the LG modes is ring-shaped and 
they are called donut modes (see Fig. 1(b),(c),(d)) [29]. 

Light-Atom interaction 

In our study, see Fig. 2, we consider a calcium ion Ca+ (the red point) 
in the initial state |i〉 interacting with a light field defined by a vector 
potential A→ polarized in the x-direction and propagating in the z-di
rection that induces a transition to a final state |f〉. 

For weak fields the Hamiltonian for the light-ion interaction is pro
portional to A→⋅ p→ + p→⋅ A→ [30] and the applicable transition matrix 
element is [21] 
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〉
(2.1) 

Herein, for a certain purpose, A→ is a vector potential of Laguerre 
Gaussian beam with OAM [1] and we will use the cylindrical co
ordinates (ρ, φ, z) as we used for Eq. (1.1) 
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In the case of a Gaussian beam, where l = 0 and p = 0, one can find 
that under such conditions [21] the expansion of the vector potential for 
the electric dipole and quadrupole approximations [31] is given by 

A→00 ≈ A→0 (1 + ikz) (2.3) 

where A→0 is related to the dipole transition and the term A→0ikz is 
responsible for the quadrupole transition. 

Now for the Laguerre Gaussian beam such that l = 1 and p = 0 
(LG10), the leading term of the vector potential is 

A→10 ≈ A→0
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(2.4) 

which as we will demonstrate below corresponds to the quadrupole 
approximation. 

The calculation of the electric quadrupole transition matrix elements 
of the interaction Hamiltonian for the Gaussian beam can be written as 
follows: 
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Further for LG10 

〈

f | r→⋅ A→10|i
〉

=

〈

f | r→⋅ A→0

̅̅̅
2

√
ρeiφ

w0
|i
〉

=

̅̅̅
2

√
A0

w0

〈
f |xrsinθeiφ|i

〉

=
−

̅̅̅
2

√
A0

w0

〈

f |r2

̅̅̅̅
1
2

√ ̅̅̅̅̅
4π
3

√
(

T (1)
− 1 − T (1)

+1

)
̅̅̅̅̅
8π
3

√

T (1)
+1 |i

〉

=
4π
3

̅̅̅
2

√
A0

w0

〈
f |r2
(

T(1)
+1 − T(1)

− 1

)
T(1)
+1 |i

〉

=
4π
3

̅̅̅
2

√
A0

w0

〈
f |r2
(

T(1)
+1 T (1)

+1 − T (1)
− 1 T(1)

+1

)
|i
〉

=
4π
3

̅̅̅
2

√
A0

w0

〈

f |r2

(

T(2)
+2 +

T(2)
0̅̅̅
6

√ −
T (1)

0̅̅̅
2

√ +
T (0)

0̅̅̅
3

√

)

|i

〉
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Eq. (2.6) represents only the interaction Hamiltonian of the trans
verse electric field with the atomic system. In 2017 a group of scientists 
from Argentina and Germany demonstrated that the longitudinal com
ponents of the electric field must be taken into account [32], in order to 
fully interpret the earlier experimental data [20], and that both trans
verse and longitudinal interaction components have comparable mag
nitudes and the ratio between them does not depend on the focal size. 
Moreover, they demonstrated that Eq. (2.6) must be modified into the 
following expanded form, 
〈
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In deriving Eq. (2.5) and Eq. (2.7), we used certain expressions for 
the spherical tensor components as in the following equations, 
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Fig. 1. LG modes and the transverse intensity profile with p = 0 and (a) l = 0, 
(b) l = 1, (c) l = 2, (d) l = 3. 

Fig. 2. A wave vector k
→

of the laser beam propagates in z- direction while the 
linear polarization in the x-axis, and ρ and r→ described by the polar angles φ 
and θ respectively. 
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Two-Photon transitions 

In 1930 Maria Goeppert-Mayer suggested that n photons each of 
energy hω can be absorbed to induce atomic transitions between two 
bound states with energy separation nhω, provided that the photons are 
arriving almost simultaneously withing a time interval considerably 
shorter than the excited state lifetime. More than 50 years ago, a lot of 
multiphoton transitions calculations on noble gases and alkali atoms 
have been performed [33–35]. In the seventies, many theoretical studies 
and experiments were conducted, which proved, among other things, 
that the polarization of the light affects the total multiphoton transition 
rates [36–38] while multiphoton ionization of atoms by polarized light 
can produce polarized photoelectrons if the spin–orbit coupling in the 
atomic species is exploited [39–41]. Of particular interest to our work 
here is the theoretical and experimental work on the dominant contri
bution in multiphoton ionization of quadrupole transitions when 
appropriate near-resonance excitations occur [42,43]. 

In our research, the results of which we present in detail below, we 

calculated the two-photon transition amplitudes for both Gaussian and 
LG10 beams for specific transitions in Ca+1 starting from its the ground 

state 4S1
2 
. This one-active-electron ion has been employed in most of the 

recent literature on the interaction of LG beams with atomic systems. 
The expressions we derive can, of course, be applied to other one-active- 
electron systems, e.g. the alkaline atoms. 

One of our goals was to identify the excitation channels through 
which these two-photon transitions proceed and compare the excitation 
pathways induced by Gaussian and LG beams, respectively. This com
parison may become somewhat subtle, even in qualitative terms, so we 
tried our best to make it meaningful and relevant. 

Calculating two-photon transition amplitudes for Gaussian and LG10 
beams 

The general formula for the transition amplitudes for two-photon 
transition is given by 

Tfi =
∑

n

〈f |HI |n〉〈n|HI |i〉
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(3.1) 

Here |f〉 is the final state, |i〉 is the initial state (always 4S1
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in our 
study) and with spin–orbit coupling taken into account we use the LSJM 
state representation, so |i〉 =|0 1

2
1
2

±1
2

〉
, |n〉 is the intermediate state, HI is 

the interaction Hamiltonian and En, Ei, El are the energies of the in
termediate state, the initial state and the photon, respectively. In our 
study, we consider the interaction between the outer atomic electron in 
the state 4S1

2 
and the Gaussian or LG10 laser beam; so the interaction 

Hamiltonian HI is proportional to Eq. (2.5) (Gaussian LG00) and/or Eq. 
(2.7) (LG10). The electric quadrupole selection rules for both cases are.  

(1) Parity is unchanged;  
(2) ΔJ, ±1,±2; J = 0 ↔ 0, 0 ↔ 1, 1/2 ↔ 1/2 are not allowed;  
(3) ΔMJ = 0, ±1, ±2;  
(4) ΔL = 0, ±1, ±2; L = 0 ↔ 0, 0 ↔ 1 are not allowed;  
(5) ΔS = 0. 

Substituting Eq. (2.5) into Eq. (3.1) we find the transition amplitude 
for a Gaussian (LG00) beam  

And for a LG10 beam using Eq. (2.7) into Eq. (3.1) we obtain 

With an initial state 4S1
2 

(S = 1/2, L = 0, and J = 1/2) and final states 
of symmetry S, D, G, taking into account the electric quadrupole se
lection rules, the transition matrix elements for T(0)

0 and T(1)
±1,0 are zero. 
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Considering Eq. (3.4) and Eq. (3.5), one can see that: 
(i) For the two-photon absorption, the transition occurs if the sum of 

the total angular momentum of the two photons 
(
mT = mph1 + mph2

)

matches the change in the projection angular momentum Δmj between 
the initial and the final state. 
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(ii) The linearly polarized light is a superposition of right circularly 
polarized (SAM=+1) and left circularly polarized (SAM = -1). More
over, the light in a Gaussian beam LG00 has OAM = 0 while for a LG10 
OAM= + 1, in our calculations. Therefore, for the linearly polarized 
Gaussian beam the total magnetic angular momentum of the two pho
tons could be mT = − 2 , 0 and+2 and for the linearly polarized LG10 
beam total angular momentum of the two photons could be mT = 0 , +

2 and + 4. These quantum numbers, according to remark (i) above, 
define the allowed two-photon transitions while transitions for which 
mT ∕= Δmj are forbidden. 

Results 

The volume of the formal results we obtained is significant. We 
included a detailed list of our results together with detailed excitation 
diagrams that describe the two-photon transition pathways in the Sup
plementary Material file. In this section, we will present just two 
representative cases in order to discuss the formal structure of our re
sults and facilitate the discussion in the following section. 

At first, let us consider a two-photon transition from the 4S1/2 initial 
state to the 6S1/2 final state. For a Gaussian beam, considering only 
quadrupole transitions, we obtain 

T4S→6S =

(
4π2

9
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0

) {
1

10π (2S13 + 3S14)

}

(4.1) 

where the two-photon transition amplitudes Sij, that result from the 
summation over all symmetry-allowed intermediate states, are given by 
the following expressions: 
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where 

Rn′ l′ (j′ )
nl(j) =

∫∞

0

r2dr Rn′ l′ (r) r2 Rnl(r) (4.4) 

are the appropriate radial matrix elements for the symmetry-allowed 
transitions. 

At this point it is necessary to comment on our choice to consider 
only quadrupole transitions in the calculation of the two-photon tran
sition matrix element given in Eq. (4.1). It is true that the transition can 
be induced in the dipole approximation and as is well known in the 
literature it will dominate the transition discussed herein by many or
ders of magnitude. However, it seems a reasonable assumption to 
disregard dipole-allowed transitions for a meaningful comparison with 
the results obtained using a LG10 field since almost all the relevant 
literature so far has associated these fields with quadrupole transitions. 
Moreover, in the case the first photon is in near resonance with a dipole- 
forbidden transition the result shown in (4.1) will be the dominant 
contribution to the two-photon transition probability. 

Considering the same two-photon transition induced by a LG10 field, 
we obtain the following expression, 

(4.5) 
where w0 is the beam waist. The two-photon transition amplitudes 

that appear in (4.5) in the term highlighted in red are defined as, 
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The numerical factor highlighted in green results from the transverse 
component of the interaction Hamiltonian and as it was to be expected 
from the earlier applications of this term in calculating one-photon 
transitions, it contributes to an enhancement (by almost an order of 
magnitude) of the corresponding component of the transition matrix 
element. The term highlighted in red represents the contribution of 
dipole-allowed transitions that are induced by the T(1)

0 operator in (3.5). 
Therefore, it becomes now clear that in order to have a meaningful 
comparison, at least theoretically, between results obtained with 
Gaussian and LG10 fields, one has to include in the Gaussian case both 
the dipole and the quadrupole interaction terms. This means that in Eq. 
(4.1) an additional term would be included; formally similar to the one 
in the bracket highlighted in red in Eq. (4.5) the only difference being 
the overall numerical prefactor. The preceding discussion clarifies the 
context in which meaningful comparisons between two-photon transi
tions induced by Gaussian and LG10 fields can be made, at least 
theoretically. 

The preceding discussion can be extended to all the results included 
in detail in the Supplementary Material file. It is worth noting that when 
the final state is of G symmetry dipole-allowed channels do not 
contribute to the two-photon matrix element. Such transitions may be a 
favorable target for future experimental investigations of two-photon 
transitions induced by LG10 fields. The analysis of the experimental 
data could be based on the results derived and tabulated in this work. 

Numerical examples 

The numerical calculation of two-photon matrix elements is a 
conceptually non-trivial and computationally intensive task. However, 
it is interesting to, at least, attempt a reasonably accurate numerical 
calculation of such matrix elements when LG beams are involved in 
order to gain some understanding on the relative orders of magnitude. 

We will present our approach using as a typical example a two- 
photon matrix element for transitions induced by a Gaussian (LG00) 
beam. The approach is exactly the same for all other matrix elements we 
calculated numerically. 

The formal expression for the two-photon matrix element from 4S1/2 
to 6S1/2 is 

T4S→6S =

(
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}

(5.1) 

where, 
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∑
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(5.3) 

The computational task is the numerical evaluation of S13 andS14 , 
which can be split in two parts. The first part, which is the simpler one, is 
the calculation of the radial matrix elements 
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Rnl
n′ l′ =

∫∞

0
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In particular, in order to calculate S13 and S14 one has to evaluate the 

integrals R
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Where n is the principal quantum number (for Ca+, n⩾3), and Rnl(r)
is the normalized radial wave function of the Hydrogen-like ion, 

Rnl(r) = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

2Z
naμ

)3
(n − l − 1)!
2n(n + l)!

√

e−
Zr

naμ

(
2Zr
naμ

)l

L(2l+1)
n− l− 1

(
2Zr
naμ

)

(5.5) 

where L(2l+1)
n− l− 1 are the generalized Laguerre polynomials, aμ = me

μ a0, 
with μ = memN

me+mN 
the reduced mass, mN the mass of the nucleus and a0 the 

Bohr radius. Hence, for Ca+, Z = 20 and aμ = 5.29184 × 10− 11 m. These 
radial wavefunctions do not include any fine-structure effects and do not 
depend on J; the labels in brackets are only used in order to keep track of 
the terms in the summations over intermediate states. The numerical 

values of the radial integrals, like R
50(1

2)
n2(3

2)
for example, are obtained using 

the Wolfram Alpha online integration software facility (https://www. 
wolframalpha.com/). These results are tabulated along with other nu
merical values in the Supplementary Material file. 

The second part of the computational task is to perform the infinite 
summations over intermediate states that are allowed from angular 
momentum selection rules. The straightforward, although not neces
sarily the most accurate, approach is to include in the summation in
termediate states for which experimental energy values have been 
obtained and tabulated; this is the so-called truncated summation 
approach. Under certain circumstances the numerical results may be 
quite reliable, for example when one of the intermediate states included 
in the summation is in near-resonance with the ground state. When the 
number of intermediate states included in the summation is sufficiently 
large it is possible to conduct convergence tests to verify the numerical 
accuracy of the calculation. In any case, this approach neglects the 
contribution of the continuum spectrum in the summation which may be 
significant if in the contribution of the bound spectrum cancellations 
occur between terms with opposite signs, resulting either from the signs 
of the energy denominators or the ones of the radial matrix elements. 

As a first attempt at obtaining numerical results for the two-photon 
matrix elements we derived, we employed the truncated summation 
approach using Ca+ as our model one-electron system, since it has been 
used in most of the literature so far. We used the energy level values 
given in [44]. In this approach the effect of the fine-structure of the 
atomic system is taken into account through the angular momentum 
selection rules and the experimental energy values for the intermediate 
states. We have tabulated, as meticulously as possible, all our numerical 
results in Tables S8–S21 in the Supplementary Material file. 

Browsing through the tables some general conclusions can be drawn. 
The matrix elements for which intermediate states of P symmetry are 
involved, were calculated with only three intermediate states because of 
lack of corresponding experimental data. On the contrary, the matrix 
elements with D-symmetry intermediate states were calculated using 10 
intermediate states and are deemed to be more accurate, within the 

limits of the employed approach. There is certainly room for improve
ment in the accuracy of the numerical results. One approach could be to 
employ the Green’s function approach in the context of single-channel 
quantum defect theory. It will be one of our future research goals to 
employ such an approach for a host of one-electron systems, including 
alkali atoms. The numerical results suggest that for the atomic species 
we studied and within the limits of the employed computational 
approach, the Sij matrix elements, like the ones shown in (5.2) and (5.3), 
have roughly the same order of magnitude both for Gaussian and LG10 
beams. As a final remark, let us attempt to estimate the relative strength 
of the two-photon transitions induced by Gaussian and LG10 beams 
respectively. We could use Eq. (3.4) and Eq. (3.5) and the results tabu
lated in the Supplementary Material file. Then it is evident that for 

Δmj = 0 transitions, the ratio of Gaussian to LG10 is ∼
π2w2

0
2λ2 , where w0 is 

the beam waist and λ is the wavelength of the light beam. C.T Schmie
gelow et al [20] used a laser beam with w0 = 2.7μm and λ = 729 nm and 
they measured that this ratio for a one-photon quadrupole transition is 
approximately 13.0. For the two-photon transition 4S1

2 
to 6S1

2 
in Ca+ the 

photon wavelength is 283 nm. So using the values for the beam waist 
and the wavelength to be 2.7 μm and 283 nm respectively, we estimate 
this ratio to be about 4.5 × 102 for two-photon transitions, i.e. approx
imately an order of magnitude larger than for one-photon transitions. 

Conclusions and discussion 

We report detailed theoretical calculations of specific two-photon 
transitions induced by a LG10 field in a one-active electron atomic sys
tem. We also report similar transition matrix elements for a Gaussian 
beam. We clarify the context within which such theoretical calculations 
may be meaningfully compared and we underline the importance of 
including dipole-allowed transition channels in the calculation of the 
two-photon transition amplitudes. We report numerical results for 
selected two-photon transitions in Ca+ employing the truncated sum
mation method and offer an estimate for the relative magnitude of two- 
photon transitions induced by Gaussian and LG10 beams, respectively. 

Our results are a first attempt at addressing the question of two- 
photon transitions induced by OAM-carrying light beams. A number of 
variations in and additions to our study could include LG beams with 
different indices (both l and p) as well as different two-photon atomic 
transitions allowed by the selection rules. Numerical calculations of two- 
photon transition amplitudes of improved and controllable accuracy in a 
variety of one-electron atoms would be also desirable but in our opinion 
this tedious and non-trivial exercise would be more meaningful in the 
context of a concerted experimental and theoretical investigation. Such 
an investigation will also reveal the possible limitations of the theoret
ical approach developed in the present study as well as unforeseen ad
vantages in using OAM-carrying beams for two-photon transitions. 
Another interesting aspect of such interactions that has recently 
emerged as a promising research direction, is the spatial dependence of 
selection rules and transition rates when the atomic system is located 
(presumably by optical traps or tweezers) at an off-axis position [45,46]. 
In the context of two-photon transitions the spatial dependence will be 
particularly complex because of the product of two single-photon matrix 
elements appearing in the numerator of the infinite summation over 
intermediate states. One may have to resort to a fully numerical calcu
lation in order to produce specific results for the spatial dependence of 
the two-photon transition matrix elements. It is a topic we plan to pursue 
in a future study. 
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Supplementary data to this article can be found online at https://doi. 
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