
Concepts of Programming Languages
Lecture 10 - Object-Oriented Programming

Patrick Donnelly

Montana State University

Spring 2014

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 1 / 56

Administrivia

Reading:

Chapter 12

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 2 / 56

I am surprised that ancient and modern writers have not attributed
greater importance to the laws of inheritance . . .

Alexis de Tocqueville (1840)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 3 / 56

Ask not what you can do
for your classes,

Ask what your classes can do
for you.

Owen Astrachan

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 56

Object-oriented Languages

Many object-oriented programming (OOP) languages

Some support procedural and data-oriented programming (e.g., Ada
95+ and C++)

Some support functional program (e.g., CLOS)

Newer languages do not support other paradigms but use their
imperative structures (e.g., Java and C#)

Some are pure OOP language (e.g., Smalltalk & Ruby)

Some functional languages support OOP, but they are not discussed in
this chapter

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 56

Imperative Programming Paradigm

Algorithms + Data Structures = Programs [Wirth]

Produce a program by functional decomposition

Start with function to be computed

Systematically decompose function into more primitive functions

Stop when all functions map to program statements

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 56

Procedural Abstraction

Concerned mainly with interface:

Function

What it computes

Ignore details of how

Example: sort(list, length);

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 56

Data Abstraction

Extend procedural abstraction to include data:
Example: type float

Extend imperative notion of type by:
Providing encapsulation of data/functions
Example: stack of int’s
Separation of interface from implementation

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 56

Encapsulation

Definition
Encapsulation is a mechanism which allows logically related
constants, types, variables, methods, and so on, to be grouped into a
new entity.

Examples:
Procedures
Packages
Classes

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 56

A Simple Stack in C

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 56

A Stack Type in C

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 56

Implementation of Stack Type in C

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 12 / 56

Goal of Data Abstraction

Package
Data type
Functions

Into a module so that functions provide:
public interface
defines type

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 56

The Object Model

Problems remained:

Automatic initialization and finalization

No simple way to extend a data abstraction

Concept of a class

Object decomposition, rather than function decomposition

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 14 / 56

Class

Definition
A class is a type declaration which encapsulates constants,
variables, and functions for manipulating these variables.

A class is a mechanism for defining an abstract data type.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 56

Simple Stack Class in Java (1/2)

class MyStack {
class Node {

Object val;
Node next;
Node(Object v, Node n) { val = v;

next = n; }
}
Node theStack;

MyStack() { theStack = null; }

boolean empty() { return theStack == null; }

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 56

Simple Stack Class in Java (2/2)

Object pop() {
Object result = theStack.val;
theStack = theStack.next;
return result;

}

Object top() { return theStack.val; }

void push(Object v) {
theStack = new Node(v, theStack);

}
}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 56

Object Model

Constructor

Destructor

Client of a class

Class methods (Java static methods)

Instance methods

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 56

Object Model

OO program: collection of objects which communicate by sending
messages

Generally, only 1 object is executing at a time

Object-based language (vs. OO language)

Classes

Determine type of an object

Permit full type checking

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 56

Visibility

public

protected

private

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 20 / 56

Inheritance

Class hierarchy
Subclass, parent or super class

is-a relationship
A stack is-a kind of a list
So are: queue, deque, priority queue

has-a relationship
Identifies a class as a client of another class
Aggregation
A class is an aggregation if it contains other class objects

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 21 / 56

Inheritance

In single inheritance, the class hierarchy forms a tree.

Rooted in a most general class: Object

Inheritance supports code reuse

Remark: in Java a Stack extends a Vector

Good or bad idea?
Why?

Single inheritance languages: Smalltalk, Java

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 56

Inheritance

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 56

Inheritance

Calls to methods are called messages

The entire collection of methods of an object is called its message
protocol or message interface

Messages have two parts–a method name and the destination object

In the simplest case, a class inherits all of the entities of its parent

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 24 / 56

Inheritance

Inheritance can be complicated by access controls to encapsulated
entities

A class can hide entities from its subclasses
A class can hide entities from its clients
A class can also hide entities for its clients while allowing its
subclasses to see them

Besides inheriting methods as is, a class can modify an inherited
method

The new one overrides the inherited one
The method in the parent is overriden

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 25 / 56

Inheritance

Three ways a class can differ from its parent:

1 The parent class can define some of its variables or methods to
have private access, which means they will not be visible in the
subclass

2 The subclass can add variables and/or methods to those inherited
from the parent

3 The subclass can modify the behavior of one or more of its
inherited methods.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 56

Inheritance

There are two kinds of variables in a class:

Class variables - one/class

Instance variables - one/object

There are two kinds of methods in a class:

Class methods - accept messages to the class

Instance methods - accept messages to objects

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 27 / 56

Multiple Inheritance

Allows a class to be a subclass of zero, one, or more classes.

Class hierarchy is a directed graph

Advantage: facilitates code reuse

Disadvantage: more complicated semantics

Re: Design Patterns book mentions multiple inheritance in conjunction
with only two of its many patterns.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 28 / 56

Object-Oriented

Definition
A language is object-oriented if it supports:

an encapsulation mechanism with information hiding for defining
abstract data types,

virtual methods, and

inheritance

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 29 / 56

Polymorphism

Polymorphic - having many forms

Definition
In OO languages polymorphism refers to the late binding of a call to
one of several different implementations of a method in an inheritance
hierarchy.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 56

Polymorphism

Consider the call: obj.m();

obj of type T

All subtypes must implement method m()

In a statically typed language, verified at compile time

Actual method called can vary at run time depending on actual
type of obj

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 31 / 56

Polymorphism Example

for (Drawable obj : myList)
obj.paint();

// paint method invoked varies
// each graphical object paints itself
// essence of OOP

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 32 / 56

Dynamic Binding

Definition
A polymorphic variable can be defined in a class that is able to
reference (or point to) objects of the class and objects of any of its
descendants

When a class hierarchy includes classes that override methods and
such methods are called through a polymorphic variable, the binding to
the correct method will be dynamic

Allows software systems to be more easily extended during both
development and maintenance

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 33 / 56

Substitutability

Definition
A subclass method is substitutable for a parent class method if the
subclass’s method performs the same general function.

Thus, the paint method of each graphical object must be transparent
to the caller.

The code to paint each graphical object depends on the principle of
substitutability.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 34 / 56

Polymorphism

Essence: same call evokes a different method depending on class of
object

Example: obj.paint(g);
Button
Panel
Choice Box

Substitutability principle

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 35 / 56

Templates or Generics

A kind of class generator

Can restrict a Collections class to holding a particular kind of object

Definition
A template defines a family of classes parameterized by one or more
types.

Prior to Java 1.5, clients had to downcast an object retrieved from a
Collection class.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 36 / 56

Generics Example

ArrayList<Drawable> list = new ArrayList<Drawable> ();

...

for (Drawable d : list)
d.paint(g);

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 37 / 56

Abstract Classes

Definition
An abstract class is one that is either declared to be abstract or has
one or more abstract methods.

Definition
An abstract method is a method that contains no code beyond its
signature.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 38 / 56

Abstract Classes

Any subclass of an abstract class that does not provide an
implementation of an inherited abstract method is itself abstract.

Because abstract classes have methods that cannot be executed,
client programs cannot initialize an object that is a member an abstract
class.

This restriction ensures that a call will not be made to an abstract
(unimplemented) method.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 39 / 56

Abstract Classes Example

abstract class Expression { ... }
class Variable extends Expression { ... }
abstract class Value extends Expression { ... }

class IntValue extends Value { ... }
class BoolValue extends Value { ... }
class FloatValue extends Value { ... }
class CharValue extends Value { ... }

class Binary extends Expression { ... }
class Unary extends Expression { ... }

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 56

Nested Classes

If a new class is needed by only one class, there is no reason to define
so it can be seen by other classes

Can the new class be nested inside the class that uses it?
In some cases, the new class is nested inside a subprogram
rather than directly in another class

Other issues:
Which facilities of the nesting class should be visible to the nested
class and vice versa

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 41 / 56

Interfaces

Definition
An interface encapsulates a collection of constants and abstract
method signatures.

An interface may not include either variables, constructors, or
non-abstract methods.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 42 / 56

Interface Example

public interface Map {
public abstract boolean containsKey(Object key);
public abstract boolean containsValue(Object value);
public abstract boolean equals(Object o);
public abstract Object get(Object key);
public abstract Object remove(Object key);
...

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 43 / 56

Interfaces

Because it is not a class, an interface does not have a constructor, but
an abstract class does.

Some like to think of an interface as an alternative to multiple
inheritance.

Strictly speaking, however, an interface is not quite the same since it
doesn’t provide a means of reusing code;

i.e., all of its methods must be abstract.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 44 / 56

Interfaces

An interface is similar to multiple inheritance in the sense that an
interface is a type.

A class that implements multiple interfaces appears to be many
different types, one for each interface.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 45 / 56

The Exclusivity of Objects
Everything is an object

Advantage - elegance and purity
Disadvantage - slow operations on simple objects

Add objects to a complete typing system
Advantage - fast operations on simple objects
Disadvantage - results in a confusing type system (two kinds of
entities)

Include an imperative-style typing system for primitives but make
everything else objects

Advantage - fast operations on simple objects and a relatively
small typing system
Disadvantage - still some confusion because of the two type
systems

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 46 / 56

Virtual Method Table (VMT)

How is the appropriate virtual method is called at run time.

At compile time the actual run time class of any object may be
unknown.

MyList myList;
...
System.out.println(myList.toString());

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 47 / 56

Virtual Method Table (VMT)

Each class has its own VMT, with each instance of the class having a
reference (or pointer) to the VMT.

A simple implementation of the VMT would be a hash table, using the
method name (or signature, in the case of overloading) as the key and
the run time address of the method invoked as the value.

For statically typed languages, the VMT is kept as an array.

The method being invoked is converted to an index into the VMT at
compile time.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 48 / 56

Virtual Method Table (VMT)

Each class has its own VMT, with each instance of the class having a
reference (or pointer) to the VMT.

A simple implementation of the VMT would be a hash table, using the
method name (or signature, in the case of overloading) as the key and
the run time address of the method invoked as the value.

For statically typed languages, the VMT is kept as an array.

The method being invoked is converted to an index into the VMT at
compile time.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 48 / 56

Virtual Method Table (VMT) Example

class A {
Obj a;
void am1() { ... }
void am2() { ... }

}

class B extends A {
Obj b;
void bm1() { ... }
void bm2() { ... }
void am2() { ... }

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 49 / 56

Virtual Method Table (VMT) Example

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 50 / 56

Run Time Type Identification

Definition
Run time type identification (RTTI) is the ability of the language to
identify at run time the actual type or class of an object.

All dynamically typed languages have this ability, whereas most
statically typed imperative languages, such as C, lack this ability.

At the machine level, recall that data is basically untyped.

In Java, for example, given any object reference, we can determine its
class via:

Class c = obj.getClass();

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 51 / 56

Reflection

Definition
Reflection is a mechanism whereby a program can discover and use
the methods of any of its objects and classes.

Reflection is essential for programming tools that allow plugins (such
as Eclipse – www.eclipse.org) and for JavaBeans components.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 52 / 56

Reflection

In Java the Class class provides the following information about an
object:

The superclass or parent class.

The names and types of all fields.

The names and signatures of all methods.

The signatures of all constructors.

The interfaces that the class implements.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 53 / 56

Reflection Example

Class class = obj.getClass();
Constructor[] cons = class.getDeclaredConstructors();
for (int i=0; i < cons.length; i++) {

System.out.print(class.getName() + "(");
Class[] param = cons[i].getParameterTypes();
for (int j=0; j < param.length; j++) {

if (j > 0) System.out.print(", ");
System.out.print(param[j].getName();

}
System.out.println(")");

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 54 / 56

Summary

Smalltalk is a pure OOL

C++ has two distinct type systems (hybrid)

Java is not a hybrid language like C++; it supports only OOP

C# is based on C++ and Java

Ruby is a relatively recent pure OOP language; provides some new
ideas in support for OOP

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 55 / 56

Summary

OO programming involves three fundamental concepts: ADTs,
inheritance, dynamic binding

Major design issues: exclusivity of objects, subclasses and subtypes,
type checking and polymorphism, single and multiple inheritance,
dynamic binding, explicit and implicit de-allocation of objects, and
nested classes

Implementing OOP involves some new data structures

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 56 / 56

