Question: 1 . (a) Given

$$
\begin{aligned}
x-y & =2 \\
x-z & =3 \\
-6 x+2 y+3 z & =1
\end{aligned}
$$

i. Write the system of equations in matrix form $A X=B$,
ii. Use Elementary matrix method to find A^{-1}, and
iii. Use A^{-1} to solve the given system.
(b) Find the value of k so that the system of equations

$$
\begin{array}{r}
x+y+3 z=0 \\
4 x+3 y+k z=0 \\
2 x+y+2 z=0
\end{array}
$$

has a non-trivial solution.
(c) If C is a 4×4 matrix with $\operatorname{det} C=1 / 4$, find

$$
\text { i) } \left.\operatorname{det} C^{-1}, \quad \text { ii) } \operatorname{det} C^{T}, \quad \text { iii }\right) \operatorname{det} 2 C .
$$

Question: 2.(a) Find the volume of parallelepiped with adjacent edges AB, AC, and AD where [5+5+5]

$$
A(2,1,3), B(1,4,-2), C(3,-4,1) \text { and } D(5,3,1)
$$

(b) Find a parametric equation of the line of intersection of the planes,

$$
x+y+z=2 \text { and } x-3 y+2 z=1
$$

(c) Show that the line $x=-1-6 t, y=1+4 t, z=6+2 t$ and the plane $3 x+2 y+5 z=7$ are parallel. Hence find the distance between the line and the plane.
Question: 3. (a) A particle is moving along the curve
[6+6+6]

$$
r(t)=t \cos t i+t \sin t j+t^{2} k
$$

Find its velocity and acceleration and speed at $t=\frac{\pi}{2}$.
(b) Find the unit tangent vector and principal normal vector for the curve \mathbf{C}

$$
r(t)=(\cos t+t \sin t) i+(\sin t-t \cos t) j+3 k \quad, t>0
$$

(c) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{3 x^{4}+4 y^{2}}$ does not exist.

Question: 4. (a) Find equation of the tangent plane and the normal line to the surface

$$
x^{2}+3 x y-y^{2}+z^{2}=6 \text { at }(1,-1,3)
$$

$[6+6+6]$ (b) Show that the function $u(x, t)=e^{-a^{2} t} \sin a x$
satisfies the heat equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$ for every real number a.
(c) If $f(x, y, z)=\left|\begin{array}{ccc}x^{2} & y^{2} & z^{2} \\ x & y & z \\ 1 & 1 & 1\end{array}\right|$, evaluate the deteminant and find the value of $f_{x}+f_{y}+f_{z}$.

Question: 5. (a) Find the relative extrema and saddle points, if any, of the function

$$
f(x, y)=3 x^{3}-5 x^{2}+x y^{2}-2 x^{2} y-4 x .
$$

(b) Use Lagrange multipliers tur find the extreme value of the frunction $f(x, y)=x^{2}-2 y$ subiset to constraint $x^{2}+y^{2}=4$.

