TIME: 3 Hours
M-107

DEPARTMENT OF MATHEMATICS
FULL MARKS: 80
Final Examination (Second Semester 1436-1437)
Question 1: (a) What conditions must \mathbf{a}, \mathbf{b} and \mathbf{c} satisfy in order for the system

\[\)| $x+z=a$ |
| :--- |
| $[6+6]$ |\quad| $y-z=b$ |
| :--- |
| $2 x+y+z=c$ | to be consistent.

\]

(b) Suppose the points $\mathrm{P}(3,0), \mathrm{Q}(1,2)$ and $\mathrm{R}(5,2)$ lie on the circle $x^{2}+y^{2}+a x+b y+c=0$
i. Write the system of linear equations in a, b and c.
ii. Solve the system by Gauss - Jordon method.
iii. Write the equation of circle.
(c) Solve the system of equations

$$
\begin{aligned}
2 x-2 y+3 z & =3 \\
x-y+z & =1 \\
x+y-z & =1
\end{aligned}
$$

by finding A^{-1}, using method of cofactors, where A is the coefficient matrix of the system.
Question 2: (a) Let $A(1,0,2), B(1,2,2), C(1,1,-1)$ and $D(x, 3,-2)$ be points in space.
$[6+6+6] \quad$ Find X, if the volume of the parallelepiped having adjacent sides $A B, A C$, and $A D$ is 5 unit ${ }^{3}$.
(b) Show that the line $\mathrm{L}: x=2-3 t, y=1+t$, and $z=1-t, t \in R$ and the plane P: $x+2 y-z+1=0$ are parallel. Hence find the distance between the line and the plane.
(c) Let the curve \mathbf{C} is given by $y=4-x^{2}$ with $-2<x<2$. Sketch the curve C and find radius of curvature and center of curvature at the point $P(0,4)$
Question 3: (a) Show that $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{2} y}{x^{4}+y^{2}}\right)$ does not exist.
[6+6] (b) The temperature distribution T at any point $P(x, y, z)$ in $x y z$ coordinate system is given by $T(x, y, z)=8\left(2 x^{2}+4 y^{2}+9 z^{2}\right)^{\frac{1}{2}}$, use differentials to approximate the temperature difference between the points $(6,3,2)$ to $(6.1,3.3,1.98)$.
Question 4: (a) Show that $v(x, t)=(x-a t)^{4}+\cos (x+a t)$ satisfies the wave equation
$[6+6+8]$

$$
\frac{\partial^{2} v}{\partial t^{2}}=a^{2} \frac{\partial^{2} v}{\partial x^{2}}, a \in R
$$

(b) Find equations of the tangent plane and the normal line to the surface $x y^{2}+3 x-z^{2}=4$ at the point $(2,1,-2)$.
(c) Let $f(x, y)=x^{2}-4 x y$.
(i) Find the gradient of $f(x, y)$ at the point $\mathrm{P}(1,2)$.
(ii) Use gradient to find the directional derivative of $f(x, y)$ at $\mathbf{P}(1,2)$ in the direction from $P(1,2)$ to $Q(2,5)$.
Question 5: (a) Find local extrema and saddle points of $f(x, y)=2 x^{3}+6 x y^{2}-3 y^{3}-150 x$
(b) If $f(x, y, z)=2 x^{2}+y^{2}+3 z^{2}$, use Lagrange multipliers to find maximum and minimum values of $f(x, y, z)$ subject to condition $2 x-3 y-4 z=49$.

