FINAL EXAMINATION, SUMMER SEM. 143-1-1435

Department of Mathematics

Fing Saud University
MATH: 107 Time: 3 Hours Full Marks: 40

Question \# 1. Marks: $4+4=8$

(a) Solve the following system of linear equations by Gauss-Jordan elimination:

$$
\left\{\begin{array}{cc}
-x_{1}-x_{2}+2 x_{3}-3 x_{4}+x_{5} & =0 \\
2 x_{1}+2 x_{2}-x_{3}+x_{5} & =0 \\
x_{1}+x_{2}-2 x_{3}-x_{5} & =0 \\
x_{3}+x_{4}+x_{5} & =0
\end{array}\right.
$$

(b) Given the matrices

$$
A=\left(\begin{array}{ccc}
2 & 2 & 3 \\
1 & 2 & 1 \\
2 & -2 & 1
\end{array}\right)
$$

$B=\left(\begin{array}{ll}1-2 & 3\end{array}\right)$ and $X=\left(\begin{array}{lll}x & y & z\end{array}\right)$, solve the equation: $A X^{T}=3 X^{T}+$ $2 B^{T}$ for x, y, z.
Question \# 2. Marks: $4+2+3=9$
(a) Consider the following system of linear equations:

$$
\left\{\begin{array}{l}
3 x+2 y-z=64 \\
x+6 y+3 z=128 \\
2 x-4 y+0 z=192
\end{array}\right.
$$

(i) Write the system in the form of $A X=B$, and then find A^{-1} by adjoint formula.
(ii) Solve the system by using A^{-1} that you found by adjoint in (i).
(b) Find the parametric equations of the line of intersection of the planes: $x-2 y+4 z=2$ and $x+y-2 z=5$.
(c) Find the distance from the point $A(3,1,-1)$ to the line: $x=1+4 t$, $y=3-t, z=4 t$.
Or, (d) Find an equation of the plane that contains the point $P(5,0,2)$ and the line: $x=3 t+1, y=-2 t+4, z=t-3$.

Question \# 3. Marks: $4+2+3=9$
(a) A particle moves along the curve $r(t)=\left(t^{3}+1\right) i+2 t j+t^{2} k$. where t is time. Find velocity v and acceleration a at $t=1$. Also, find the component
of velocity $C o m_{\mathrm{b}} v$, and component of acceleration $C o m_{\mathrm{b}} \mathbf{a}$ in the direction of the vector $b=i+j+2 k$.
(b) The position vector of a moving particle at time t is given by $\mathbf{r}(t)=$ $4 \cos t i+9 \sin t j+2 t k$. Find the tangential component of acceleration.
(c) Show that the function $z(x, t)=(\sin n \pi x)(\cos n \pi a t)$ satisfies the wave equation $\frac{\partial^{2} z}{\partial t^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}$.

Or, (d) Find $\frac{d w}{d t}$, if $w=x^{2} y^{3} z^{4}, x=2 t+1, y=3 t-2 z=5 t+4$.
Question \# 4. Marks: $3+4+4+3=14$
(a) Suppose that the height of a right circular cone decreases from 11 to 10.98 inches, while the radius increases from 6 to 6.02 inches. use differentials to approximate the change in volume of the cone.
(b) The electric potential V at (x, y, z) is given by $V(x, y, z)=x^{4} y z-x y^{3}+z$. Find the rate of change of V at $P(1,1,-3)$ in the direction from P to origin. Also, find in what direction does V increase most rapidly at P.
(c) Identify the surface, and find the equations of the tangent plane, and normal line at the point $P(-2,1,-3)$ to the surface $\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3$.
(d) Find the local extrema and saddle points, if any, of the function $f(x, y)=$ $2 x^{2}+2 x y+y^{2}+2 x-5$.

Or, (e) Use Lagrange multipliers to find the extrema of $f(x, y, z)=x^{2}+$ $y^{2}+z^{2}$ subject to constraint $x+3 y-2 z=7$.

