Question: 1.(a) Solve the system of linear equations by using Gauss -Jordan method

$$
\begin{align*}
x-y+2 z & =75 \\
3 x+2 y+z & =10 \tag{10}\\
2 x-3 y-2 z & =-10
\end{align*}
$$

(b) Use row operations to show that the value of $\operatorname{det} \mathrm{A}=0$ if $a+b+c=0$

$$
\text { where } A=\left[\begin{array}{lll}
a & b & c \tag{5}\\
c & a & b \\
b & c & a
\end{array}\right] \text {. }
$$

Question: 2. (a) Find conditions on \boldsymbol{a} and \mathbf{b}, for which the following system,

$$
\begin{gathered}
x+y+z=6 \\
x+2 y+3 z=10 \\
x+2 y+a z=b
\end{gathered}
$$

have (i) no solution, (ii) a unique solution, and (iii) more then one solution?
(b) Let $A=\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]$ and $p(x)=x^{2}-2$

Find (i) $p(A)$, (ii) A^{-1} and (iii) A^{8}
Question: 3. Solve the system of linear equations

$$
\begin{aligned}
3 x-3 y+4 z & =-1 \\
2 x-3 y+4 z & =4 \\
-y+z & =3
\end{aligned}
$$

a) Write the system in the form of $A X=b$
b) Find Adj (A),
c) Deduce A^{-1}
d) Use A^{-1} to find the solution of the given system

Question: 1.(a) Solve the system of linear equations by using Gauss -Jordan method

$$
\begin{gather*}
x-y+2 z=45 \\
3 x+2 y+z=10 \tag{10}\\
2 x-3 y-2 z=-10
\end{gather*}
$$

solution
(10)

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
1 & -1 & 2 & 5 \\
3 & 2 & 1 & 10 \\
2 & -3 & -2 & -10
\end{array}\right] \equiv\left[\begin{array}{ccc|c}
1 & -1 & 2 & 5 \\
0 & 5 & -5 & -5 \\
0 & -1 & -6 & -20
\end{array}\right] } \\
& \equiv {\left[\begin{array}{ccc|c}
1 & -1 & 2 & 5 \\
0 & 1 & -1 & -1 \\
0 & -1 & -6 & -20
\end{array}\right] \equiv\left[\begin{array}{ccc|c}
1 & 0 & 1 & 4 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & 3
\end{array}\right] } \\
& \equiv\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]
\end{aligned}
$$

(b)
(5)

$$
\begin{aligned}
\operatorname{det} A & \left.=\left|\begin{array}{ccc}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|=\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
c & a & b \\
b & c & a
\end{array}\right| \begin{array}{ccc}
1 & 1 & 1 \\
c & a & b \\
b & c & a
\end{array} \right\rvert\,=0 \quad \text { hecause } a+b+c=0
\end{aligned}
$$

Question. 2 (a)
$(10)\left[\begin{array}{lll|l}1 & 1 & 1 & 6 \\ 1 & 2 & 3 & 10 \\ 1 & 2 & a & b\end{array}\right] \equiv\left[\begin{array}{lll|l}1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & a-1 & b-6\end{array}\right]-R_{1}+R_{3}$

$$
\equiv\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 4 \\
0 & 0 & a-3 & b-10
\end{array}\right]-R_{2}+R_{3}
$$

(1) u_{0} solution, of $a=3$
(ii) unique solution $a \neq 3$,
(b) Let $A=\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]$ and $p(x)=x^{2}-2$

Find $(i) \quad p(A)$, (ii) A^{-1} and (iii) A^{8}
[10]
(i) $P(A)=A^{2}-2 I$
$[4]$

$$
A^{2}=A \cdot A=\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

$$
P(A)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]-\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0
$$

[4] ii) $A=\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right] \quad A^{-1}=\frac{1}{-1-1}\left[\begin{array}{cc}1 & -1 \\ -1 & -1\end{array}\right]=-\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ -1 & -1\end{array}\right]$
$[2] \quad A^{8}=\left(A^{2}\right)^{4}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]^{4}=\left[\begin{array}{cc}2^{4} & 0 \\ 0 & 2^{4}\end{array}\right]=\left[\begin{array}{ll}16 & 0 \\ 0 & 16\end{array}\right]$
Question. 3
(a)

$$
\left[\begin{array}{ccc}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right] \quad A x=b
$$

$\lceil 2\rceil$
(b)
$[8]$
(c)
[3]

$$
\begin{aligned}
& \operatorname{det} A=3+6-8=1 \neq 0 \\
& A^{-1}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-2 & 3 & -4 \\
-2 & 3 & -3
\end{array}\right]
\end{aligned}
$$

(d)
[2]

$$
\begin{gathered}
x=A^{-1} \quad b=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-2 & 3 & -4 \\
-2 & 3 & -3
\end{array}\right]\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right]=\left[\begin{array}{c}
-5 \\
2 \\
5
\end{array}\right] \\
x=-5, y=2, \quad z=5
\end{gathered}
$$

