First Mid Term Exam., Summer, 1435
 M 107 Full Marks: 25 Time: 90 Min.

Question 1. [Mark: 5]

Solve the following system of linear equations by Gauss-Jordan elimination:

$$
\begin{cases}x_{1}-x_{2}+2 x_{3}-x_{4} & =-1 \\ 2 x_{1}+x_{2}-2 x_{3}-2 x_{4} & =-2 \\ -x_{1}+2 x_{2}-4 x_{3}+x_{4} & =1 \\ 3 x_{1}-3 x_{4} & =-3\end{cases}
$$

Question 2. [Marks: $2+4+2=8$]
(a) Consider the following system of linear equations:

$$
\begin{cases}x_{1}+2 x_{2}+3 x_{3} & =3 \\ 2 x_{1}+5 x_{2}+3 x_{3} & =5 \\ x_{1}+8 x_{3} & =12\end{cases}
$$

(1) Write the system in the form of $A X=B$, and then find A^{-1} by elementary row operation.
(2) Solve the system by using A^{-1}.
(b) If $f(x)=2 x^{2}-3 x+5$ and

$$
A=\left(\begin{array}{cc}
-1 & 2 \\
0 & 3
\end{array}\right)
$$

then find $f(A)$.
Question 3. [Mark: 4]
Find the determinant of the following matrix by reducing the matrix to rowechelon form:

$$
A=\left(\begin{array}{ccc}
0 & 1 & 5 \\
3 & -6 & 9 \\
2 & 6 & 1
\end{array}\right)
$$

Question 4. [Mark: 4]
For which value(s) of β the following matrix fails to be invertible?

$$
A=\left(\begin{array}{lll}
1 & 2 & 4 \\
5 & 1 & 6 \\
\beta & 5 & 2
\end{array}\right)
$$

Question 5. [Mark: 4]
Solve the system of linear equations by using Cramer's Rule:

$$
\begin{cases}x++2 z & =6 \\ -3 x+4 y+6 z & =30 \\ -x-2 y+3 z & =8\end{cases}
$$

