Question: 1. (a) For given vectors $a=i+3 j+k, b=j+2 k$ and $c=a-b$, [8+8+8] show that $\quad a \times(b \times c) \equiv(a \cdot b) c+(a \cdot c) b$
(b) Find equation of line passing through the point ($1,-2,3$) and parallel to planes $2 x-4 y+z=3$ and $x+2 y-6 z+4=0$.
(c) Find the equation of plane through the points $\mathrm{P}(1,0,-2)$ and $\mathrm{Q}(0,-2,0)$ and containing vector $a=3 i-j+2 k$

Question: 2. The acceleration of a space ship is given by $a(t)=<2 t, 0,-\sin t>$ for all $\mathbf{t} \geq 0$
[12] with initial velocity $v(0)=\langle 0,0,1>$ and initial position $r(0)=\langle 1,2,300\rangle$
i. Find the velocity $\boldsymbol{v}(t)$.
ii. Find the position of space ship at time $t=\frac{\pi}{2}$ and
iii. Find the tangential and normal components of the acceleration.

Question: 3. (a) Find equation of the tangent line to the curve $r(t)=(1+t) i+e^{2 t} j+e^{-2 t_{k}} k$ $[6+8] \quad$ at the point $t=0$.
(b) Identify the surface $x^{2}+4 z^{2}=9 y$. Find its traces on the coordinate planes and sketch the surface.

