Second Mid Term Exam., Summer, 1435 Department of Mathematics College of Sciences
 King Saud University Math: 107 Full Marks: 25 Time: 90 Min.

Question 1. [Mark: $2+2+2=6$]
(a) Find the scalar c so that the vector $\langle 2,1, c\rangle$ is orthogonal to the sum of the vecturs $\langle 1,-1,2\rangle$ and $\langle 3,2,1\rangle$
(b) Find the direction cosines and direction angles of the vector $\mathbf{a}=3 \mathbf{i}+2 \mathbf{j}+$ 5 k .
(c) Find the work done by a constant force $\mathbf{F}=\langle-5,3,1\rangle$ which moves an object along a straight line from the point $P(3,-4,5)$ to $Q(1,3,6)$.
Question 2. [Marks: $4+3=7$]
(a) Determine whether the lines $l_{1}: x=1-6 t, y=3+2 t, z=4-2 t$; $l_{2}: x=2+2 v, y=6+v, z=5+v$ are parallel or intersecting. If they intersect, find the point of intersection.
(b) Find the equation of the plane determined by the points $P(2,2,1)$, $Q(3,1,5)$ and $R(3,3,4)$.
Question 3. [Mark: $2+1=3$]
(a) Identify the surface $4 x^{2}+2 y^{2}-z^{2}=16$, and sketch the graph.
(b) If $\mathbf{r}(t)=(2-3 t) \mathbf{i}+\sqrt{2-t} \mathbf{j}+t^{2} \mathbf{k}$ is a vector valued function, then determine the domain $D_{\mathbf{r}}$ of \mathbf{r}.
Question 4. [Mark: 3]
Find the path of the curve when acceleration of the particle moving along this curve is $\mathbf{a}(t)=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$, the initial velocity of the particle is $\mathbf{v}(0)=\mathbf{i}+\mathbf{j}$, and $\mathbf{r}(0)=2 \mathbf{k}$.
Question 5. [Mark: $3+3=6$]
(a) Find the radius and radius of curvature for the curve $y=x^{3}+2$ at $P(1,3)$.
(h) Find the normal component of acceleration of a particle moving along the curve $C: \mathbf{r}(t)=3 t \mathbf{i}+t^{2} \mathbf{j}+t \mathbf{k}$, when $t=2$.

