
Concepts of Programming Languages
Lecture 11 - Expressions

Patrick Donnelly

Montana State University

Spring 2014

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 1 / 36

Administrivia

Programming #2 : due 03.21
Homework #3 : due 03.31

Reading:

Chapter 7

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 2 / 36

Ishmael: Surely all this is not without meaning.

Moby Dick by Herman Melville

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 3 / 36

Expressions

Expressions are the fundamental means of specifying computations in
a programming language

To understand expression evaluation, need to be familiar with the
orders of operator and operand evaluation

Essence of imperative languages is dominant role of assignment
statements

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 36

Expression Semantics

How do we represent this expression tree?

Associative: (a + b) - (c * d)

Polish Prefix: - + a b * c d

Polish Postfix: a b + c d * -

Cambridge Polish: (- (+ a b) (* c d))

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 36

Expression Semantics

How do we represent this expression tree?

Associative: (a + b) - (c * d)

Polish Prefix: - + a b * c d

Polish Postfix: a b + c d * -

Cambridge Polish: (- (+ a b) (* c d))

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 36

Expression Semantics

How do we represent this expression tree?

Associative: (a + b) - (c * d)

Polish Prefix: - + a b * c d

Polish Postfix: a b + c d * -

Cambridge Polish: (- (+ a b) (* c d))

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 36

Expression Semantics

How do we represent this expression tree?

Associative: (a + b) - (c * d)

Polish Prefix: - + a b * c d

Polish Postfix: a b + c d * -

Cambridge Polish: (- (+ a b) (* c d))

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 36

Expression Semantics

How do we represent this expression tree?

Associative: (a + b) - (c * d)

Polish Prefix: - + a b * c d

Polish Postfix: a b + c d * -

Cambridge Polish: (- (+ a b) (* c d))

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 36

Expression Semantics

How do we represent this expression tree?

Associative: (a + b) - (c * d)

Polish Prefix: - + a b * c d

Polish Postfix: a b + c d * -

Cambridge Polish: (- (+ a b) (* c d))

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 36

Arithmetic Expressions

Arithmetic evaluation was one of the motivations for the development
of the first programming languages

Arithmetic expressions consist of operators, operands, parentheses,
and function calls

Design issues for arithmetic expressions
Operator precedence rules?
Operator associativity rules?
Order of operand evaluation?
Operand evaluation side effects?
Operator overloading?
Type mixing in expressions?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 36

Operator Precedence Rules

Definition
The operator precedence rules for expression evaluation define the
order in which “adjacent” operators of different precedence levels are
evaluated.

Typical precedence levels:
parentheses
unary operators
** (if the language supports it)
*, /
+, -

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 36

Precedence of Operators

Operators C-like Ada Fortran
Unary - 7 3 3

** 5 5
* / 6 4 4
+ - 5 3 3

== != 4 2 2
< <= . . . 3 2 2

not 7 2 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 36

Operator Associativity Rule

Definition
The operator associativity rules for expression evaluation define the
order in which adjacent operators with the same precedence level are
evaluated.

Typical associativity rules:
Left to right, except **, which is right to left

Sometimes unary operators associate right to left (e.g., in FORTRAN)

APL is different; all operators have equal precedence and all operators
associate right to left

Precedence and associativity rules can be overriden with parentheses

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 36

Associativity of Operators

Language + - * / Unary - ** == != < . . .
C-like L R L
Ada L non non non
Fortran L R R L

What is the meaning of a < b < c?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 36

Expressions in Ruby and Scheme

Ruby:
All arithmetic, relational, and assignment operators, as well as
array indexing, shifts, and bit-wise logic operators, are
implemented as methods
One result of this is that these operators can all be overriden by
application programs

Scheme (and Common LISP):
All arithmetic and logic operations are by explicitly called
subprograms
a + b * c is coded as (+ a (* b c))

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 36

Conditional Expressions

C-based languages (e.g., C, C++)

An example:

average = (count == 0)? 0 : sum / count

Evaluates as if written as follows:

if (count == 0)
average = 0

else
average = sum /count

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 12 / 36

Operand Evaluation Order

Operand evaluation order:

1 Variables: fetch the value from memory

2 Constants: sometimes a fetch from memory; sometimes the
constant is in the machine language instruction

3 Parenthesized expressions: evaluate all operands and operators
first

4 The most interesting case is when an operand is a function call

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 36

Program State

Definition
The state of a program is the collection of all active objects and their
current values.

Maps:

1 The pairing of active objects with specific memory locations,

2 and the pairing of active memory locations with their current
values.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 14 / 36

Program State

The current statement (portion of an abstract syntax tree) to be
executed in a program is interpreted relative to the current state.

The individual steps that occur during a program run can be viewed as
a series of state transformations.

For the purposes of this chapter, use only a map from a variable to its
value; like a debugger watch window, tied to a particular statement.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 36

Example

// compute the factorial of n

n i f

1 void main () {
2 int n, i, f;
3 n = 3;

undef undef undef

4 i = 1;

3 undef undef

5 f = 1;

3 1 undef

6 while (i < n) {

3 3 1 2 1 2

7 i = i + 1;

3 3 1 2 1 2

8 f = f * i;

3 3 2 3 1 2

9 }

3 3 6

10 }

3 3 6

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 36

Example

// compute the factorial of n n i f
1 void main () {
2 int n, i, f;
3 n = 3;

undef undef undef

4 i = 1;

3 undef undef

5 f = 1;

3 1 undef

6 while (i < n) {

3 3 1 2 1 2

7 i = i + 1;

3 3 1 2 1 2

8 f = f * i;

3 3 2 3 1 2

9 }

3 3 6

10 }

3 3 6

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 36

Example

// compute the factorial of n n i f
1 void main () {
2 int n, i, f;
3 n = 3; undef undef undef
4 i = 1; 3 undef undef
5 f = 1;

3 1 undef

6 while (i < n) {

3 3 1 2 1 2

7 i = i + 1;

3 3 1 2 1 2

8 f = f * i;

3 3 2 3 1 2

9 }

3 3 6

10 }

3 3 6

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 36

Example

// compute the factorial of n n i f
1 void main () {
2 int n, i, f;
3 n = 3;

undef undef undef

4 i = 1; 3 undef undef
5 f = 1; 3 1 undef
6 while (i < n) {

3 3 1 2 1 2

7 i = i + 1;

3 3 1 2 1 2

8 f = f * i;

3 3 2 3 1 2

9 }

3 3 6

10 }

3 3 6

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 36

Example

// compute the factorial of n n i f
1 void main () {
2 int n, i, f;
3 n = 3;

undef undef undef

4 i = 1;

3 undef undef

5 f = 1; 3 1 undef
6 while (i < n) { 3

3

1

2

1

2

7 i = i + 1;

3 3 1 2 1 2

8 f = f * i;

3 3 2 3 1 2

9 }

3 3 6

10 }

3 3 6

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 36

Example

// compute the factorial of n n i f
1 void main () {
2 int n, i, f;
3 n = 3;

undef undef undef

4 i = 1;

3 undef undef

5 f = 1;

3 1 undef

6 while (i < n) { 3

3

1

2

1

2

7 i = i + 1; 3

3

1

2

1

2

8 f = f * i;

3 3 2 3 1 2

9 }

3 3 6

10 }

3 3 6

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 36

Example

// compute the factorial of n n i f
1 void main () {
2 int n, i, f;
3 n = 3;

undef undef undef

4 i = 1;

3 undef undef

5 f = 1;

3 1 undef

6 while (i < n) {

3 3 1 2 1 2

7 i = i + 1; 3

3

1

2

1

2

8 f = f * i; 3

3

2

3

1

2

9 }

3 3 6

10 }

3 3 6

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 36

Example

// compute the factorial of n n i f
1 void main () {
2 int n, i, f;
3 n = 3;

undef undef undef

4 i = 1;

3 undef undef

5 f = 1;

3 1 undef

6 while (i < n) {

3 3 1 2 1 2

7 i = i + 1;

3 3 1 2 1 2

8 f = f * i; 3

3

2

3

1

2

9 }

3 3 6

10 }

3 3 6

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 36

Example

// compute the factorial of n n i f
1 void main () {
2 int n, i, f;
3 n = 3;

undef undef undef

4 i = 1;

3 undef undef

5 f = 1;

3 1 undef

6 while (i < n) {

3

3

1

2

1

2
7 i = i + 1;

3

3

1

2

1

2
8 f = f * i;

3

3

2

3

1

2
9 } 3 3 6
10 }

3 3 6

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 36

Example

// compute the factorial of n n i f
1 void main () {
2 int n, i, f;
3 n = 3;

undef undef undef

4 i = 1;

3 undef undef

5 f = 1;

3 1 undef

6 while (i < n) {

3 3 1 2 1 2

7 i = i + 1;

3 3 1 2 1 2

8 f = f * i;

3 3 2 3 1 2

9 }

3 3 6

10 } 3 3 6

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 36

Side Effects

Definition
A side effect is a change to any non-local variable or I/O.

What is the value of:

i = 2; b = 2; c = 5;

a = b * i++ + c * i;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 36

Side Effects

A change to any non-local variable or I/O.

What is the value of:

i = 2; b = 2; c = 5;

a = b * i++ + c * i;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 36

Potentials for Side Effects

Definition
Functional side effects are when a function changes a two-way
parameter or a non-local variable.

Problem with functional side effects:
When a function referenced in an expression alters another
operand of the expression;
e.g., for a parameter change:

a = 10;
/* assume that fun changes its parameter */
b = a + fun(&a);

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 36

Functional Side Effects

Two possible solutions to the problem:

1 Write the language definition to disallow functional side effects
I No two-way parameters in functions
I No non-local references in functions
I Advantage: it works!
I Disadvantage: inflexibility of one-way parameters and lack of

non-local references

2 Write the language definition to demand that operand evaluation
order be fixed

I Disadvantage: limits some compiler optimizations
I Java requires that operands appear to be evaluated in left-to-right

order

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 20 / 36

Referential Transparency

Definition
A program has the property of referential transparency if any two
expressions in the program that have the same value can be
substituted for one another anywhere in the program, without affecting
the action of the program.

result1 = (fun(a) + b) / (fun(a) - c);
temp = fun(a);
result2 = (temp + b) / (temp - c);

If fun has no side effects, result1 = result2

Otherwise, not, and referential transparency is violated

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 21 / 36

Referential Transparency

Advantage of referential transparency
Semantics of a program is much easier to understand if it has
referential transparency

Because they do not have variables, programs in pure functional
languages are referentially transparent

Functions cannot have state, which would be stored in local
variables
If a function uses an outside value, it must be a constant (there
are no variables). So, the value of a function depends only on its
parameters

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 36

Overloaded Operators

Use of an operator for more than one purpose is called operator
overloading

Some are common (e.g., + for int and float)

Some are potential trouble (e.g., * in C and C++)

Loss of compiler error detection (omission of an operand should
be a detectable error)
Some loss of readability

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 36

Overloaded Operators

C++, C#, and F# allow user-defined overloaded operators

When sensibly used, such operators can be an aid to readability (avoid
method calls, expressions appear natural)

Potential problems:
Users can define nonsense operations
Readability may suffer, even when the operators make sense

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 24 / 36

Type Conversions

Definition
A narrowing conversion is one that converts an object to a type that
cannot include all of the values of the original type e.g., float to int.

Definition
A widening conversion is one in which an object is converted to a
type that can include at least approximations to all of the values of the
original type e.g., int to float.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 25 / 36

Type Conversions: Mixed Mode

Definition
A mixed-mode expression is one that has operands of different
types.

Definition
A coercion is an implicit type conversion

Disadvantage of coercions:
They decrease in the type error de1tection ability of the compiler

In most languages, all numeric types are coerced in expressions, using
widening conversions

In Ada, there are virtually no coercions in expressions

In ML and F#, there are no coercions in expressions

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 36

Explicit Type Conversions

Definition
Explicit type conversions are called castings in C-based languages.

Examples:
C: (int)angle
F#: float(sum)

Note that F#’s syntax is similar to that of function calls

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 27 / 36

Errors in Expressions

Causes:
Inherent limitations of arithmetic e.g., division by zero

Limitations of computer arithmetic e.g. overflow

Often ignored by the run-time system

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 28 / 36

Relational and Boolean Expressions

Relational Expressions:
Use relational operators and operands of various types
Evaluate to some Boolean representation
Operator symbols used vary somewhat among languages (!=, /=,
=, .NE., <>, #)

JavaScript and PHP have two additional relational operator,
=== and !==

Similar to their cousins, == and !=, except that they do not coerce
their operands
Ruby uses == for equality relation operator that uses coercions
and eql? for those that do not

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 29 / 36

Relational and Boolean Expressions

Boolean Expressions
Operands are Boolean and the result is Boolean

C89 has no Boolean type–it uses int type with 0 for false and nonzero
for true

One odd characteristic of C’s expressions: a < b < c is a legal
expression, but the result is not what you might expect:

Left operator is evaluated, producing 0 or 1

The evaluation result is then compared with the third operand
(i.e., c)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 36

Short Circuit Evaluation

Definition
Short Circuit Evaluation is an expression in which the result is
determined without evaluating all of the operands and/or operators

Example
(13 * a) * (b / 13 - 1)

If a is zero, there is no need to evaluate (b /13 - 1)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 31 / 36

Short Circuit Evaluation

a and b evaluated as:

if a then b else false

a or b evaluated as:

if a then true else b

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 32 / 36

Short Circuit Evaluation Example I

Node p = head;
while (p != null && p.info != key)

p = p.next;
if (p == null) // not in list

...
else // found it

...

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 33 / 36

Short Circuit Evaluation Example II

boolean found = false;
while (p != null && ! found) {

if (p.info == key)
found = true;

else
p = p.next;

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 34 / 36

Short Circuit Evaluation

Problem with non-short-circuit evaluation:

index = 0;
while (index <= length) && (LIST[index] != value)

index++;

When index=length, LIST[index] will cause an indexing problem
(assuming LIST is length - 1 long)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 35 / 36

Short Circuit Evaluation

C, C++, and Java: use short-circuit evaluation for the usual Boolean
operators (&& and ||), but also provide bitwise Boolean operators that
are not short circuit (& and |)

All logic operators in Ruby, Perl, ML, F#, and Python are short-circuit
evaluated

Ada: programmer can specify either (short-circuit is specified with and
then and or else)

Short-circuit evaluation exposes the potential problem of side effects in
expressions

e.g. (a > b) || (b++ / 3)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 36 / 36

