Day 11

Graphs

Graph Theory

Graph theory is the study of graphs, mathematical structures used to model pair wise relations between \qquad objects from a certain collection

Graph paper is not very useful
"Graphs" in this context are not to be confused with "graphs of functions" and other kinds of graphs or representations of data

A graph is a finite set of dots called vertices (or nodes) connected by links called edges (or arcs)

Applications

Graph	Vertices	Edges
Transportation	street intersections, airports	highways, air routes
Scheduling	tasks	precedence constraints
Software systems	functions	function calls
Internet	web pages	hyperlinks
Social Networks	people, actors, terrorists	friendships, movie casts, associations

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Graph	Vertices	Edges	
Communication	telephones, computers	Fiber optic cable	
Circuits	gates, registers, processors	wires	
Mechanical	joints	rods, beams, springs	
Hydraulic	reservoirs, pumping stations	pipelines	
Electrical Power Grid	transmission stations	cable	
Financial	stocks, currency	transactions	

\qquad

Graph	Vertices	Edges
Games	board pieces	legal moves
Protein interaction	proteins	protein interaction
Genetics regulatory networks	genes	regulatory interactions
Neural Networks	neurons	synapses
Chemical Compounds	molecules	chemical bonds
Infectious Disease	people	infections

Seven Bridges of Königsberg

Königsberg once a capital of the German providence of East Prussia it is a sea port and Russian exclave between Poland and Lithuania on the Baltic Sea

\qquad
\qquad
\qquad
question is whether it is possible to walk with a route that crosses each bridge exactly once, and return to the starting point.

Leonhard Euler proved that it was not possible

Leonhard Euler

The paper written by Leonhard Euler on the Seven Bridges of Königsberg and published in 1736 is regarded as the first paper in the history of graph theory

\qquad
\qquad
\qquad
\qquad
1707-1783 \qquad
\qquad

Seven Bridges of Königsberg \qquad
Euler solved the Seven Bridges of Königsberg problem using graph theory. The problem: Can we walk over \qquad each bridge exactly once returning to our starting location?

Remarks

The Konigsberg bridge problem appeared in Solutio problematis ad geometriam situs pertinentis, \qquad Commetarii Academiae Scientiarum Imperialis Petropolitanae (1736) which may be the earliest paper on graph theory

For more on this see
\qquad
\qquad
\qquad
http://mathdl.maa.org/images/upload_library/22/P olya/hopkins.pdf

Other Contributors

Thomas Pennington Kirkman (Manchester, England 18061895) British clergyman who studied combinatorics \qquad
William Rowan Hamilton (Dublin, Ireland 1805-1865) \qquad applied "quaternions" worked on optics, dynamics and analysis created the "icosian game" in 1857, a precursor of Hamiltonian cycles \qquad
Denes Konig (Budapest, Hungary 1844-1944) Interested \qquad in four-color problem and graph theory 1936: published
\qquad graph theory

Edges

\qquad
An edge may be labeled by a pair of vertices, for instance $e=(v, w)$
e is said to be incident on v and w
Isolated vertex = a vertex without incident edges

Six Degrees of Separation

Six degrees of separation refers to the idea that human beings are connected through relationships with at most six other people
Several studies, such as Milgram's small world experiment have been conducted to empirically measure this connectedness

While the exact number of links between people differs depending on the population measured, it is generally found to be relatively small
Hence, six degrees of separation is somewhat synonymous with the idea of the "small world" phenomenon

\qquad
\qquad
\qquad
The Bacon number is the number of degrees of \qquad separation (see Six degrees of separation) they have
\qquad from actor Kevin Bacon, as defined by the game known as Six Degrees of Kevin Bacon
\qquad
The higher the Bacon number, the farther away from Kevin Bacon the actor is
\qquad

Example	Bacon Number $=3$
Adolf Hitler Adolf Hitler was in Der	
Ewige Jude (1940) with Curt Bois	
and	
Curt Bois was in The Great Sinner	
(1949) with Kenneth Tobey	
and	
Kenneth Tobey was in Hero at Large	
(1980) with Kevin Bacon	

Bacon Number

Number of actors with the same Bacon Number

Bacon Number	
0	1
1	1,458
2	101,196
3	226,727
4	49,823
5	2,922
6	250
7	54
8	2

Total number of linkable actors: 382,433 Average Bacon number: 2,876

Erdős Number

The Erdős number, honoring the late Hungarian mathematician Paul Erdős, one of the most prolific writers of mathematical papers, is a way of describing the "collaborative distance", in regard to mathematical papers, between an author and Erdős

1913-1996
\qquad
\qquad
\qquad
\qquad
\qquad write a mathematical paper with an author with a finite
\qquad Erdős number
For more info see http://www.oakland.edu/enp/

Erdős Number

An eBay auction offered an Erdős number of 2 for a prospective paper to be submitted for publication to Chance (a magazine of the American Statistical
Association) about skill in the World Series of Poker and the World Poker Tour

It closed on 22 July 2004 with a winning bid of $\$ 127.40$ \qquad
\qquad

Weighted Graph

A weighted graph associates a label (weight) with every edge in the graph
a weighted graph $G(E, V)$ with a real-valued weight function $f: E \rightarrow R$

Review - Directed Graph

\qquad
A directed graph or digraph G is an ordered pair $G:=(V, A)$ with \qquad
V, a set of vertices or nodes,
A, a set of ordered pairs of vertices, called directed edges, arcs, or arrows \qquad

An edge or arc $e=(x, y)$ is considered to be directed \qquad from x to y, y is called the head and x is called the tail of the arc; y is said to be a direct successor of x, and x is said to be a direct predecessor of y
\qquad

If a path leads from x to y, then y is said to be a \qquad successor of x, and x is said to be a predecessor of y

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

\qquad
\qquad
He particularly enjoys visiting Hamburg, Salzburg, Rome, Vienna, and Madrid \qquad
He prefers Madrid over Salzburg over Hamburg; and Vienna and Rome over Madrid and Salzburg \qquad
Represent this using a directed graph
\qquad
\qquad

Traveling Salesperson Problem

A salesperson, starting at point 1 has to visit six locations (1 to 6) and must come back to the starting point

Traveling Salesperson Problem

\qquad
The first route (1-4-2-5-6-3-1), with a total length of \qquad 62 km , is a relevant selection but is not the best solution

The second route (1-2-5-4-6-3-1) represents a much better solution as the total distance, 48 km , is less than for the first route \qquad
This example assumes Euclidean distances and an isotropic space, but in reality the solution may be \qquad different considering the configuration of transport infrastructures

Example

Whole pineapples are served in a restaurant in London To ensure freshness, the pineapples are purchased in Hawaii and air freighted from Honolulu to Heathrow in London

The following network diagram outlines the different routes that the pineapples could take

In this example, our weights are the freight associated freight costs

This is a "shortest-path" problem
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The cost to freight a pineapple is known for each are:		
Honolulu	Chicago	105
Honolulu	San Francisco	75
Honolulu	Los Angeles	68
Chicago	Boston	45
Chicago	New York	56
San Francisco	Boston	71
San Francisco	New York	48
San Francisco	Atlanta	63
Los Angeles	New York	44
Los Angeles	Atlanta	57
Boston	Heathrow	88
New York	Heathrow	65
Atlanta	Heathrow 7	6

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Our Routes

Note: This is a directed weighted graph

\qquad
\qquad
\qquad
\qquad
\qquad

Parallel edges

- Two or more edges joining

Special Edges
a
pair of vertices

- in the example, a and
b are joined by two parallel edges

Loops

- An edge that starts and ends at the same vertex
- In the example, vertex d has a loop

Similarity Graphs

Problem: grouping objects into similarity classes based
\qquad
\qquad on various properties of the objects

Example:
Computer programs that implement the same algorithm have properties $\mathrm{k}=1,2$ or 3 such as: \qquad

1. Number of lines in the program
2. Number of "return" statements \qquad
3. Number of function calls

Similarity Graphs

Suppose five programs are compared and a table is made:

Program	\# of lines	\# of "return"	\# of function calls
1	66	20	1
2	41	10	2
3	68	5	8
4	90	34	5
5	75	12	14

Similarity Graphs

- A graph G is constructed as follows:
$-V(G)$ is the set of programs $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. \qquad
- Each vertex v_{i} is assigned a triple $\left(p_{1}, p_{2}, p_{3}\right)$,
- where p_{k} is the value of property $k=1,2$, or 3 \qquad
$-\mathrm{v}_{1}=(66,20,1)$
$-v_{2}=(41,10,2)$
$-v_{3}=(68,5,8)$
$-\mathrm{v}_{4}=(90,34,5)$
$-\mathrm{v}_{5}=(75,12,14)$

\qquad
\qquad
\qquad
\qquad

Dissimilarity Functions

\qquad
Define a dissimilarity function as follows:
For each pair of vertices $v=\left(p_{1}, p_{2}, p_{3}\right)$ and
\qquad $w=\left(q_{1}, q_{2}, q_{3}\right)$ let

$$
s(v, w)=\sum_{k=1}^{3}\left|p_{k}-q_{k}\right|
$$

$\square s(v, w)$ is a measure of dissimilarity between any two
\qquad programs v and w
\square Fix a number N. Insert an edge between v and w if $s(v, w)<N$. Then:

We say that v and w are in the same class if $v=w$ or if there is a path between v and w .

Dissimilarity Functions

Let $\mathrm{N}=25$
and assume $s\left(v_{1}, v_{3}\right)=24$,
$\mathrm{s}\left(\mathrm{v}_{3}, \mathrm{v}_{5}\right)=20$ and all other
$s\left(v_{i}, v_{j}\right)>25$
There are three classes:
$\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}\right\},\left\{\mathrm{v}_{2}\right\}$ and $\left\{\mathrm{v}_{4}\right\}$

\qquad
\qquad
\qquad

Definition

A graph denoted G or $G(V, E)$ consists of two parts \qquad
(1) A set $V=V(G)$ of vertices (points, nodes)
(2) A collection of $E=E(G)$ of unordered pairs of distinct vertices called edges
\qquad
\qquad
\qquad
\qquad
\qquad

Drawing Graphs

\qquad
Graphs are represented graphically by drawing a dot for \qquad every vertex, and drawing an arc between two vertices if they are connected by an edge

If the graph is directed, the direction is indicated by drawing an arrow \qquad
\qquad
\qquad
\qquad

Remarks

A graph drawing should not be confused with the graph itself (the abstract, non-graphical structure) as there are several ways to structure the graph drawing

All that matters is which vertices are connected to which others by how many edges and not the exact layout

In practice it is often difficult to decide if two drawings represent the same graph

Depending on the problem domain some layouts may be better suited and easier to understand than others

Example Graph

$G(V, E)$ is a graph here $V=\{A, B, C, D\}$ and
$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ where $e_{1}=\{A, B\}$,
$e_{2}=\{B, C\}, e_{3}=\{C, D\}, e_{4}=\{A, C\}, e_{5}=\{B, D\}$

Terminology

\qquad
Size refers to the number of edges
Order is the number of vertices
A trivial graph is a graph with a single vertex

Terminology

\qquad
When two vertices of a graph are connected by an edge, these vertices are said to be adjacent, and the edge is said to join them

A vertex and an edge that touch one another are said to be incident to one another

Suppose $e=\{u, v\}$ is an edge, then the vertex u is said to be adjacent to v, and the edge e is said to be incident on u and on v
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
$G(V, E)$ is a graph here $V=\{A, B, C, D\}$ and \qquad
$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ where $e_{1}=\{A, B\}$,
$e_{2}=\{A, C\}, e_{3}=\{C, B\}, e_{4}=\{A, D\}$

Edge Labeled Graph

\qquad
The edges have labels \qquad
\qquad
\qquad
\qquad
\qquad

Vertex Labeled Graph

\qquad
The vertices have labels \qquad
\qquad

\qquad
\qquad
\qquad

\qquad

\qquad

Trivial Graph

A trivial graph is a graph with a single vertex and no edges
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Adjacent Edges

Two edges in a graph are termed adjacent if they connect to the same vertex \qquad
\qquad

\qquad
\qquad
\qquad

Adjacent Vertices

Two vertices are termed adjacent if they are connected by the same edge
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multigraph

\qquad
A Multigraph $G=G(V, E)$ consists a set of vertices and a set of edges E may contain mutliple edges,
i.e. edges connected to the same endpoint, and E may contain one or more loops

A loop is an edge whose endpoints are the same vertex
\qquad
\qquad
\qquad
\qquad
\qquad

Example multigraph

This is a multigraph, but not a graph
A graph does not have multiple edges or loops

Equivalent Graphs

\qquad
Equivalent graphs have the same number of vertices and edges \qquad
They contain the $\mathrm{G}(\mathrm{V}, \mathrm{E})$ \qquad
But they may be drawn differently \qquad
\qquad
\qquad

\qquad

We see four vertices and six edges. Each vertex is connected to the other three vertices.

These are equivalent graphs
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Isomorphic Graphs

\qquad
A Graph Isomorphism is a bijection (one-to-one and onto) mapping between the vertices of two
\qquad graphs G and H
$f: V(G) \rightarrow V(H)$
with the property that any two vertices of u
and v from G are adjacent if and only if $f(u)$
and $f(v)$ are adjacent in H. \qquad
These are equivalent graphs \qquad
\qquad

\qquad

\qquad

\qquad

\qquad

\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Isomorphic Graphs

If an isomorphism can be constructed between two graphs, then we say those graphs are isomorphic
Determining whether two graphs are isomorphic is referred to as the graph isomorphism problem
Graphs G and H are isomorphic if and only if for some ordering they have the same adjacency matrix
Two graphs are isomorphic if they are they same graphs, drawn differently. Two graphs are isomorphic if you can label both graphs with the same labels so that every vertex has exactly the same neighbors in both graphs

Terminology

\qquad
Order of a graph: number of nodes in the graph \qquad
Degree: the number of edges at a node, without regard to whether the graph is directed or \qquad undirected

Connected graph: a graph in which all pairs of nodes are connected by a path. Informally, the graph is all in one piece

A graph that can be drawn in a plane or on a sphere so that its edges do not cross is said to be planar

Terminology

Directed edge
ordered pair of vertices
first vertex is origin
second vertex is the destination
e.g. flight

Undirected edge
unordered pair of vertices
e.g. flight route

Terminology

Directed graph
all the edges are directed
e.g. route network

Undirected graph
all the edges are undirected
e.g. flight network

Mixed graph
some edges are directed some edges are undirected

Parallel Processing

\qquad
Parallel processing is the simultaneous execution of the same task (split up and specially adapted) on \qquad multiple processors in order to obtain results faster
The idea is based on the fact that the process of solving a problem usually can be divided into smaller tasks, which may be carried out simultaneously with \qquad some coordination
\qquad
\qquad
\qquad

OAK RIDGE, Tenn., Aug. 25, 2006 - An upgrade to the
Cray XT3 supercomputer at Oak Ridge National Laboratory has increased the system's computing power to 54 teraflops, or 54 trillion mathematical calculations per second, making the Cray among the most powerful open scientific systems in the world

The Jaguar has more than 10,400 processing cores and 21 terabytes of memory. Probably fifth fastest computer today

Characteristics of Parallel Processors

Institution	Name	N	Topology	BW/Link (MB/s)	BW/Sys (MB/S)	year
U. Illinois	Illiac IV	64	2D grid	40	2560	1972
ICL	DAP1	4096	2D grid	0.6	2560	1980
Goudyeal	MPP	16384	2D yrid	1.2	20,480	1982
Thinking Machines	CM-2	4096	12-cube	1	65,536	1987
nCube	nCube/ten	1024	10-cube	1.2	10,240	1987
Intel	iPSC/2	120	7-cube	2	096	1900
Maspar	MP1216	512	2D grid	3	23,000	1989
Intel	Delta	540	2D grid	40	21,600	1991
Thinking Machines	CM-5	1024	Fat Tree	20	20,480	1991

Hypercubes

Number of processors $=2^{n}$
n dimensions $(\mathrm{n}=\log \mathrm{N}$)
A cube with n dimensions is made out of
2 cubes of dimension $\mathrm{n}-1$

Also called an n-cube

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Terminology

\qquad
A path is a sequence of edges that begins at an initial vertex and ends at a terminal vertex \qquad
A path that begins and terminates in the same vertex is called a cycle or circuit

A graph that contains no cycles is called an acyclic \qquad graph \qquad
\qquad

Terminology

A graph $G=G(V, E)$ is finite if both V and E are finite The empty graph has no vertices and no edges A vertex is isolated if it does not belong to any edge
\qquad
\qquad
The degree of a vertex v is equal to the number of edges which are incident on v \qquad
The vertex is said to be even or odd according to the degree \qquad
\qquad
\qquad

Vertex E is isolated

$\operatorname{deg}(A)=3$ since A belongs to $\{A, B\},\{A, C\},\{A, D\}$ similarly $\operatorname{deg}(B)=3, \operatorname{deg}(C)=4, \operatorname{deg}(D)=2, \operatorname{deg}(E)=2$

Vertices A and B are odd, while C, D, and E are even

Terminology

A path or walk is an alternating sequence of vertices and edges, beginning and ending with a vertex \qquad
A path is closed if its first and last vertices are the same, and open if they are different

A trail is a path in which all the edges are distinct
\qquad
\qquad
\qquad
\qquad
\qquad

Distance

The distance between u and v is written $d(u, v)$ and is the shortest distance between u and v \qquad
$d(u, v)=0 \longleftrightarrow u=v$
$d(u, v)$ is not defined if no path between u and v
\qquad exists.
A path α in G with origin v_{0} and end v_{n} is an \qquad alternating sequence of vertices and edges in the form $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{n-1}, v_{n-1}, e_{n}, v_{n}$ where each edge \qquad e_{i} is incident on vertices v_{i-1} and v_{i}. The number of edges is called the length of α.

Definitions

A path α is closed if $v_{0}=v_{n}$
The path α is simple if all the vertices are distinct
The path α is a trail if all the edges are distinct
The path α is a cycle if it is closed and all vertices are distinct except $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{f}}$

A cycle of length k is called a k-cycle
A cycle in a graph must have a length of three or more. The diameter of graph written diam(G) is the maximum distance between any two of its vertices

\qquad
\qquad
\qquad
\qquad
Path ($\mathrm{B}, \mathrm{A}, \mathrm{E}, \mathrm{C}, \mathrm{B}$) is a cycle since it has distinct vertices
Path (E, A, B, D) is simple since its vertices are distinct, but is not a cycle since it is not closed
(B, E, D, B) is not a path since $\{E, D\}$ is not an edge

\qquad
\qquad
\qquad
\qquad
Path (B, A, E, C, B, D) is a trail since its edges are distinct but it is not a simple path since vertex B is repeated \qquad
(E, C, A, B, D) is not a path since $\{C, A\}$ is not an edge
(E, B, A, E, C) is a trail since the edges are distinct, but not a simple path since vertex E is repeated
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
(E, B, A, E, B) is not closed, not a trail, not a cycle, not a simple path; observe $\{E, B\}$ is repeated
($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{B}, \mathrm{A}$) is a closed path, but not a cycle since vertex B is repeated \qquad
($\mathrm{E}, \mathrm{C}, \mathrm{B}, \mathrm{A})$ is a simple path since the vertices are distinct ${ }_{93}$

Graph 1 is not connected, e.g. we have no path from vertex B to vertex C \qquad
\qquad

Example | The sum of the |
| :--- |
| degrees of the |
| vertices of a graph |
| is equal to twice the |
| number of edges |

\qquad
\qquad
\qquad
\qquad
\qquad
$\operatorname{deg}(A)=3, \operatorname{deg}(B)=3, \operatorname{deg}(C)=4, \operatorname{deg}(D)=2, \operatorname{deg}(E)=2$ sum of degrees $=14=2(7)$ twice the number of edges \qquad

Example
 Can we have a graph in with 11 vertices, each with degree 5?

The total number of degrees are 55(=11*5)
The number of edges is half of the total degrees which is $271 / 2$

We cannot have a $1 / 2$ edge
No, it is not possible
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Subgraph

Let G be a graph. Then H is a subgraph of G if
$V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$
i.e. the vertices of H are also vertices of G and \qquad the edges of H are also edges of G

Full Subgraph

\qquad
Suppose $H=H\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=G(V, E)$ \qquad

Then H is a full subgraph of G if E^{\prime} contains all the edges \qquad of E whose endpoints lie in V^{\prime}

We say H is the subgraph generated by V^{\prime}

$V^{\prime}=\{A, B, D\}, E^{\prime}=[\{A, B\},\{A, D\}]$ is not a subgraph of G since $\{A, D\}$ is not an edge in G. \qquad
$\mathrm{V}^{\prime}=\{B\}, \mathrm{E}^{\prime}=\emptyset$ is a subgraph of G .
$V^{\prime}=\{A, B, C\}, E^{\prime}=[\{A, B\},\{B, D\},\{B, C\}]$ is not a subgraph of G since $\{B, D\}$ does not have D in V^{\prime}
\qquad
\qquad

Suppose $V^{\prime}=\{A, B, C\}$ and we want to find E^{\prime} to create a full subgraph of G.
$E^{\prime}=[\{A, B\},\{B, C\}]$ since these are all of the edges in G with vertices in V^{\prime}

Connected Component

\qquad

A connected component of G is a subgraph of G which \qquad is not contained in any larger connected subgraph of G

Graph G can be partitioned into connected components

We denote a component by listing its vertices

The connected components of graph G are (A,C,D\}, \{B\}, \{E,F\}

Cut Points

The subgraph $\mathrm{G}-\mathrm{v}$ of G where v is a vertex in G
$\mathrm{G}-\mathrm{v}$ is obtained by deleting the vertex v from the vertex set $\mathrm{V}(\mathrm{G})$ and deleting all edges in $\mathrm{E}(\mathrm{G})$ which are incident on v
$\mathrm{G}-\mathrm{v}$ is the full subgraph of G generated by the
\qquad
\qquad
\qquad
\qquad
\qquad remaining vertices
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bridges
$G-e$ is obtained by deleting the edge e from the
edge set $\mathrm{E}(\mathrm{G})$
$\mathrm{V}(\mathrm{G}-\mathrm{e})=\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G}-\mathrm{e})=\mathrm{E}(\mathrm{G}) /\{\mathrm{e}\}$
An edge e is a bridge for G if $\mathrm{G}-\mathrm{e}$ is disconnected

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Since Graph $G-\{A, B\}$ is disconnected $\{A, B\}$ is a bridge for G

Since Graph $G-\{B, D\}$ is not disconnected $\{B, D\}$ is not a bridge for G

Traversable Graph

A graph G is said to be traversable if it can be drawn without any breaks in the curve and without
\qquad repeating any edge

Vertices may be repeated; edges may not be repeated

The path must include all vertices and all edges each exactly once

It has a path in which all may be traced exactly once without lifting the tracing instrument (without

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Remarks

To be traversable, whenever our path enters a vertex v we must be a path leaving v, so we could expect our vertices to be even.

The exceptions of course are the first and last vertices which could be odd since we begin and stop at these vertices.
Thus to traversable G must have no more than two odd vertices, and we should start at one odd vertex and end at the other.
\qquad
\qquad

Euler Path

If a graph is an Euler Path, that mean it has also can be traversed and has only two odd vertices
\qquad
For a Euler path we start and stop on different odd nodes
We will now revisit Euler and the Seven Bridges of Königsberg problem

Seven Bridges of Königsberg \qquad

We have four vertices, all odd, hence we can not walk over each bridge exactly once returning to our starting
\qquad
\qquad
\qquad
\qquad location.

Euler Cycle

\qquad
An Euler (or Eulerian) cycle is path through a graph which starts and ends at the same vertex and includes \qquad every edge exactly once
Euler observed that a necessary condition for the existence of Euler cycles is that all vertices in the graph have an even degree, and that for an Euler path either all, or all but two, vertices have an even degree
Hence if G is a connected graph and every vertex of G has an even degree, then G has an Euler cycle

William Rowan Hamilton

An Irish mathematician, physicist, and astronomer who made important contributions to the development of optics, dynamics, and algebra
His discovery of quaternions is perhaps his best known investigation. Hamilton's work in dynamics was later

1805-1865
\qquad
\qquad
\qquad
\qquad significant in the development of
\qquad
\qquad

Hamilton Cycle

\qquad
A Hamilton cycle is a path through a graph that starts \qquad and ends at the same vertex and includes every other
\qquad
It is a closed path that includes every vertex exactly
\qquad
This differs from the Euler cycle which uses every
\qquad
The Hamilton cycle uses each vertex exactly once (except for the first and last) and may skip edges \qquad
\qquad

Examples

Hamilton cycle but not a Euler cycle

Hamilton cycle uses every vertex
Euler cycle uses every edge

Euler cycle but not a Hamilton cycle

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gray Code

\qquad
Gray code after Frank Gray, is a binary numeral system where two successive values differ in only one digit \qquad
Gray codes are particularly useful in mechanical encoders since a slight change in position only affects one bit
Using a typical binary code, up to n bits could change, and slight misalignments between reading elements could cause wildly incorrect readings
An n-bit Gray code corresponds to a Hamiltonian cycle on an n-dimensional hypercube
\qquad
\qquad
\qquad
\qquad

Gray Code

Example ($\mathrm{N}=3$)
The binary coding of $\{0 . . .7\}$ is
$\{000,001,010,011,100,101,110,111\}$,
while one Gray coding is
$\{000,001,011,010,110,111,101,100\}$
A Gray code takes a binary sequence and shuffles it to form some new sequence with the adjacency property
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gray Code Example	Decimal	Binary	Gray
	0	0000	0000
For $\mathrm{n}=3$	1	0001	0001
The binary coding of $\{0 . . .7\}$ is	2	0010	0011
\{000, 001, 010, 011, 100, 101, 110, 111\}	3	0011	0010
while one Gray coding is	4	0100	0110
\{000, 001, 011, 010, 110, 111, 101, 100 $\}$	6	0101	0111
A Gray code takes a binary sequence and	7	0110	0101
shuffles it to form some new sequence	8	1000	1100
with the adjacency property	9	1001	1101
The table on right is code $\mathrm{n}=4$	10	1010	1111
	11	1011	1110
	12	1100	1010
	13	1101	1011
	14	1110	1001
	15	1111	1000

\qquad

Converting Gray Code to Binary

A. write down the number in gray code
B. the most significant bit of the binary number is the \qquad most significant bit of the gray code
C. add (using modulo 2) the next significant bit of the binary number to the next significant bit of the gray coded number to obtain the next binary bit
D. repeat step C till all bits of the gray coded number have been added modulo 2
The resultant number is the binary equivalent of the gray number

Binary \rightarrow Gray

Let $\mathrm{B}[\mathrm{n}: 0]$ be the input array of bits in the \qquad usual binary representation, [0] being LSB Let $\mathrm{G}[\mathrm{n}: 0]$ be the output array of bits in Gray
\qquad code
$\mathrm{G}[\mathrm{n}]=\mathrm{B}[\mathrm{n}]$
\qquad
for $\mathrm{i}=\mathrm{n}-1$ downto 0
$G[i]=B[i+1]$ XOR $B[i]$

Gray \rightarrow Binary

\qquad
\qquad
Let $\mathrm{G}[\mathrm{n}: 0]$ be the input array of bits in
\qquad
Let $\mathrm{B}[\mathrm{n}: 0]$ be the output array of bits in the
\qquad
$B[n]=G[n]$
for $\mathrm{i}=\mathrm{n}-1$ downto 0 \qquad
$B[i]=B[i+1]$ XOR $G[i]$

Complete

\qquad
A graph G is complete if every vertex is connected to every other vertex
\qquad
The complete graph with n vertices is denoted K_{n} \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Remarks

Let m be the number of edges in the complete graph K_{n}.
Each pair of vertices determine an edge

Taking combinations of vertices two at a time we have \qquad
$m=C\binom{n}{2}=\frac{n(n-1)}{2}$ ways if selecting two vertices from
n vertices
Since each vertex is connected the diameter is one $\operatorname{diam}\left(K_{n}\right)=1$

Example \quad Find the number of edges in K_{13}

$$
m=\binom{13}{2}=\frac{13 \cdot 12}{2}=78
$$

Remarks

Every vertex is connected to every n - 1 vertices; hence $\operatorname{deg}(v)=n-1$ for every v in K_{n}
n odd $\rightarrow \operatorname{deg}(\mathrm{v})=\mathrm{n}-1$ even; thus K_{n} is traversable for n odd. Also K_{2} is traversable since it has only one edge connecting the two vertices
n even $\rightarrow \operatorname{deg}(\mathrm{v})=\mathrm{n}-1$ odd; so for $\mathrm{n}>2$ the complete graph will have n (more than 2) odd vertices, hence is not traversable

Regular

A graph is regular of degree k or k-regular if every vertex has degree k
A graph is regular if every vertex has the same degree
\qquad

Bipartite Graph

\qquad
\qquad sets so that every edge has one vertex in each of the two sets

A graph is said to be bipartite if its vertices V can be partitioned into two subsets M and N such that each edge of G connect a vertex of M to a vertex of N

A bipartite graph is a special graph where the set of
\qquad
\qquad
\qquad
\qquad vertices can be divided into two disjoint sets M and N such that no edge has both end-points in the same set \qquad

Complete Bipartite Graph

\qquad
In a complete bipartite graph each vertex of M is connected to a vertex on N denoted $K_{m, n}$ where m is the number of vertices in M and n is the number of vertices in N and for standardization $\mathrm{m} \leqslant \mathrm{n}$

Since each of the m vertices in M is connected to each of the n vertices in $N K_{m, n}$ has mn edges
\qquad
\qquad
\qquad
\qquad
\qquad
Example
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example | An airport serves 5 cities $\mathrm{A}, \mathrm{B}, \mathrm{C}$, |
| :--- |
| D , and H where H is the Hub |

We create our incidence
matrix assigning a 1 if the
arrow goes from the row
element to the column
element and 0 otherwise
directed graph

$\left.\begin{array}{llllll}1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0\end{array}\right)$

Means with two flights (A^{2}) there are two routes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad from city B to city C

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Euler's Beautiful Formula

For planar graphs, $F-E+V=2$
$V=$ number of vertices
$E=$ number of edges
$F=$ number of faces

In the puzzle

Now we will look at the faces

$E=9$
\qquad
\qquad
\qquad
or house 1 - utility 1 -
house 2 - utility 2 -
house 3 - utility 3
six edges

\qquad
\qquad

Every face has at least four edges

We will use Euler's formula to
figure out how many faces there \qquad
are:
\qquad
$F-E+V=2 \quad$ So the number of edges in all the
$F=2+E-V$
$=2+9-6$
faces is at least $4 * 5=20$ edges.
$=5$ faces
\qquad
This counts each edge twice, because every edge is a \qquad boundary for two faces. So, the smallest number of
\qquad
However, we know that there are only 9 edges! Since nothing can have nine edges and ten edges at the same time, drawing a solution to the three utilities problem \qquad must be impossible.
\qquad

Practice \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chromatic Number

The chromatic number of a graph is the least number of colors required to do a coloring of a graph
\qquad
Graph coloring can be used to solve problems \qquad involving scheduling and assignments
\qquad
\qquad
\qquad
\qquad

The chromatic number $=3$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The chromatic number $=3$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Map Coloring

The goal of a map coloring problem is to color a map so that regions sharing a common border have different colors

Regions that meet only in a point may share a common
\qquad
\qquad
\qquad color

Remarks

\qquad
\qquad
A map coloring problem can be solved by first
\qquad is a vertex and an edge connects two vertices if and
\qquad
Once a map is converted into a graph vertex
\qquad be colored
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RemarkS	
Graph Information http://en.wikipedia.org/wiki/Graph theory Graph Tutorial (includes glossary) hatp://www.cs.usask.ca/content/resources/tutori	
als/csconcepts/1999 8/	
Lots of information of graph theory http://math.fau.edu/Locke/GRAPHTHE.HTM	

