Covalent Mechanisms of Protein Instability

Dr. Aws Alshamsan
Department of Pharmaceutics

Office: AA87

Tel: 4677363

aalshamsan@ksu.edu.sa

Objectives of this lecture

By the end of this lecture you will be able to:

- Describe the challenges in pharmaceutical proteins production
- 2. Distinguish between the different mechanisms of protein instability
- 3. Predict the mechanism of degradation from peptide primary structure

Protein administration

Oral

Parenteral

Amylase & Mucosa

HCl & Proteases

Plasma Proteases Albumin &
Lipoproteins

Immune System

Deglyosylation,
Adsorption
&
Denaturation

Denaturation & Degradation

Proteolysis

Adsorption & Clearance

Response

Challenges

- 1. Conventional pharmaceutical formulations would destroy most proteins and eliminate their activities:
 - Pharmaceutical manufacturing includes harsh processing steps that would be harmful for proteins e.g. heating, high shear force, granulation, compression, etc.
- 2. Short shelf life of protein preparations:
 - If kept in correct conditions, must not be used after 4 weeks post opining

Protein Structure

 The tertiary structure of the protein is essential for its function

- Intramolecular:
 - Disulfide bonds
 - Ionic bonds
- Intermolecular:
 - Hydrogen bonds
 - Hydrophobic effect

Insulin shows it all ...

Hydrophobic effect

http://academic.brooklyn.cuny.edu/biology

Hydrophobic effect

http://academic.brooklyn.cuny.edu/biology

Protein Stability

Processes Affecting
3° Structure
of Proteins

Non-covalent

Covalent

Deamidation

- Loss of the side-chain amide
- Occurs in Asn or Gln
- The sequence Asn-Gly is most common site for deamidation

- Spontaneous reaction
- Rapid
- Most likely occurs after denaturation
- β -Asp derivative is unnatural

Oxidation

Methionine

- Aromatic a.a:
 - Histidine
 - Tryptophan
 - Tyrosine
- Sulfur-containing a.a:
 - Methionine
 - Cysteine
- Methionine is the most easily oxidized
 - Sulfoxide (mild)
 - Sulfone (strong)
- Leads to loss of activity

Sulfoxide

Sulfone

Disulfide bond formation

- Two cysteine residues
- Redox reaction
 - Enhanced by O₂
 - Fe⁺⁺
 - Cu⁺
- Disulfide exchange occurs spontaneously
 - Could lead to:
 - Denaturation
 - Aggregation
 - Precipitation
- Mechanism depends on the pH

Proteoelysis

- Peptide bond breakdown
- Most serious change
- Catalytic mechanism:
 - Enzymatic in vivo
- Autocatalytic:
 - In the bottle in vitro
 - On N or C terminal Asp residue
 - Asp-Pro are most susceptible to autohydrolysis

Proteases

- The most serious limiting factor in vivo
- In different compartments:
 - GIT: Proteases attack orally administered proteins
 - Plasma: Proteases hydrolyze proteins given parenterally
 - Cytoplasm: Intracellular proteases e.g.
 Proteasome

Proteases

- Endo- or exo-proteases
- Classes:
 - 1. Serine proteases
 - 2. Threonine proteases
 - 3. Cysteine proteases
 - 4. Aspartic acid proteases
 - 5. Metalloproteases
 - 6. Glutamic acid proteases
- They act specifically:
 - 1. Chymotrypsin: aromatic a.a. (Trp, Tyr, Phe)
 - 2. Trypsin: Lys residues
 - 3. Factor Xa: Ile-(Glu or Asp)-Gly-Arg
 - 4. Carboxypeptidase: C-terminal

Asp 102, His 57, and Ser 195 are known as the Catalytic Triad

Now you are able to:

- ✓ Describe the challenges in pharmaceutical proteins production
- ✓ Distinguish between the different mechanisms of protein instability
- ✓ Predict the mechanism of degradation from peptide primary structure