Non-Covalent Mechanisms of Protein Instability

Dr. Aws Alshamsan
Department of Pharmaceutics

Office: AA87

Tel: 4677363

aalshamsan@ksu.edu.sa

Objectives of this lecture

By the end of this lecture you will be able to:

- Describe the challenges in pharmaceutical proteins production
- 2. Distinguish between the different mechanisms of protein instability
- 3. Predict the mechanism of degradation from peptide primary structure

Denaturation (unfolding)

agents: pH, temp, ionic strength, solubility

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- •Hi or low pH (>10, <3)
- •Hi or low temp (>60°C, <0°C)
- Organic solvents and Urea
- Salts (Hofmeister Series)

most stabilizing

strongly hydrated anions

most destabilizing weakly hydrated anions

citrate3->sulfate2->phosphate2->F->CI->Br->I->NO,->CIO

 $N(CH_1)_4^+>NH_4^+>Cs^+>Rb^+>K^+>Na^+>H^+>Ca^{2+}>Mg^{2+}>Al^{3+}$

weakly hydrated cations

strongly hydrated cations

Interaction with surface (also in adsorption)

- Proteins are in equilibrium between two states: native and unfolded
- Usually reversible process
- Hydrophobic a.a. hide in the core
- Hydrophilic a.a. form a coat

How to study denaturation?

- Denaturation occurs both in vitro and in vivo
- 1. Circular dichroism
- 2. Fluorescence spectroscopy
- 3. NMR spectroscopy

Circular dichroism (CD)

- Part of UV absorption spectroscopy
- Determines secondary structures of proteins
- Excellent to study changes in protein conformation

http://www.enzim.hu/~szia/cddemo/edemo0.htm

Circular dichroism

- CD spectrum reflects the structure of:
 - α -helices
 - β -sheets
 - Random coils

http://www.ap-lab.com/circular_dichroism.htm

Fluorescence spectroscopy

- Emissions spectroscopy
- Monitors quenching of tryptophan
- Denaturation changes the conformation of proteins leading spatial rearrangement of a.a.
- Trp exposure to electromagnetic beam is changed i.e. change in emission detected

Tryptophan Multiphoton Absorption

http://micro.magnet.fsu.edu/primer/techniques/fluorescence

NMR spectroscopy

- Gives signals in response to proton spinning
- Each proton in a spatial conformation gives different spin i.e. different signal
- Upon exposure to magnetic field, protons spinning is changed to give different peaks
- Each peak represent a single proton which could be identified
- 2D and 3D NMR is available

http://www.science.org.au/sats2004/mackay.htm

- Partially unfolded proteins tends to accumulate
- Aggregated forms are more stable thermodynamically
- Aggregates might remain soluble or precipitate
- Adsorption enhances aggregation phenomenon
- Aggregation occurs in vitro and in vivo

- Physical interactions:
 - Hydrophobic interaction
- Chemical interaction:
 - Disulfide bond formation
- Mechanical agitation
 - Strong shaking

http://www.vetmed.wsu.edu

Centrifugation

Figure 2: Differential Centrifugation.

Size Exclusion Chromatography

Insulin Aggregates

Types of Insulin

Insulin Glargine

Insulin Aggregation

- The tendency of insulin to form aggregates causes problems in the diabetic patient, because of the slow release of insulin from the injection site.
- Genetically engineered insulins are therefore being produced which are not aggregated after injection and therefore quickly released into the blood stream.

Precipitation

- Consequence of aggregation
- Large aggregates are no more soluble
- Might occur along with denaturation
- Adsorption could induce precipitation
- Stabilizing salts, pH, protein concentration, zinc ...
- Detected by "Turbidity Measurment" i.e. absorbance at 600 nm

Adsorption

Adsorption

- •Hydrophobic
- •Electrostatic

Now you are able to:

- ✓ Describe the challenges in pharmaceutical proteins production
- ✓ Distinguish between the different mechanisms of protein instability
- ✓ Predict the mechanism of degradation from peptide primary structure