
Concepts of Programming Languages
Lecture 15 - Functional Programming

Patrick Donnelly

Montana State University

Spring 2014

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 1 / 26

Administrivia

Assignments:

Homework #3 : due 03.31

Reading:

Chapter 15

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 2 / 26

It is better to have 100 functions operate on one data structure
than 10 functions on 10 data structures.

A. Perlis

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 3 / 26

Introduction

The design of the imperative languages is based directly on the von
Neumann architecture

Efficiency is the primary concern, rather than the suitability of the
language for software development

The design of the functional languages is based on mathematical
functions

A solid theoretical basis that is also closer to the user, but
relatively unconcerned with the architecture of the machines on
which programs will run

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 26

Overview of Functional Languages

They emerged in the 1960’s with Lisp

Functional programming mirrors mathematical functions:
domain = input, range = output

Variables are mathematical symbols:
not associated with memory locations.

Pure functional programming is state-free: no assignment

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 26

Mathematical Functions

Definition
A mathematical function is a mapping of members of one set, called
the domain set, to another set, called the range set.

Example
The function Square has R (the reals) as domain and range.

Square: R → R
Square(n): n2

Total Function
A function is total if it is defined for all values of its domain. Otherwise,
it is partial. E.g., Square is total.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 26

Functional Forms

Definition
A higher-order function, or functional form, is one that either takes
functions as parameters or yields a function as its result, or both

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 26

Functional Composition

A functional form that takes two functions as parameters and yields a
function whose value is the first actual parameter function applied to
the application of the second.

Form: h ≡ f ◦g
which means h(x) ≡ f (g(x))

Example
For f (x) ≡ x + 2 and g(x) ≡ 3 ∗ x ,

h ≡ f ◦g yields (3 ∗ x) + 2

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 26

Apply-to-all

A functional form that takes a single function as a parameter and yields
a list of values obtained by applying the given function to each element
of a list of parameters:

Form: α

Example
For h(x) ≡ x ∗ x

α(h, (2,3,4)) yields (4,9,16)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 26

Fundamentals of Functional Programming Languages

The objective of the design of a FPL is to mimic mathematical
functions to the greatest extent possible

The basic process of computation is fundamentally different in a FPL
than in an imperative language

In an imperative language, operations are done and the results
are stored in variables for later use
Management of variables is a constant concern and source of
complexity for imperative programming

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 26

Fundamentals of Functional Programming Languages

In an FPL, variables are not necessary, as is the case in mathematics

Definition
Referential transparency : a function’s result depends only upon the
values of its parameters, thus the evaluation of a function always
produces the same result given the same parameters.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 26

LISP Data Types and Structures

Data object types: originally only atoms and lists

List form: parenthesized collections of sublists and/or atoms

e.g., (A B (C D) E)

Originally, LISP was a typeless language

LISP lists are stored internally as single-linked lists

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 12 / 26

LISP Interpretation

Lambda notation is used to specify functions and function definitions.

Function applications and data have the same form.

Example
If the list (A B C) is interpreted as data it is a simple list of three atoms,
A, B, and C

If it is interpreted as a function application, it means that the function
named A is applied to the two parameters, B and C

The first LISP interpreter appeared only as a demonstration of the
universality of the computational capabilities of the notation

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 26

Common LISP

A combination of many of the features of the popular dialects of LISP
around in the early 1980s A large and complex language–the opposite
of Scheme Features include:

records
arrays
complex numbers
character strings
powerful I/O capabilities
packages with access control
iterative control statements

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 14 / 26

ML

A static-scoped functional language with syntax that is closer to Pascal
than to LISP

Uses type declarations, but also does type inferencing to determine
the types of undeclared variables

It is strongly typed (whereas Scheme is essentially typeless) and has
no type coercions

Does not have imperative-style variables

Its identifiers are untyped names for values

Includes exception handling and a module facility for implementing
abstract data types

Includes lists and list operations

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 26

Currying

ML functions actually take just one parameter–if more are given, it
considers the parameters a tuple (commas required)

Definition
Process of currying replaces a function with more than one parameter
with a function with one parameter that returns a function that takes
the other parameters of the original function

An ML function that takes more than one parameter can be defined in
curried form by leaving out the commas in the parameters

fun add a b = a + b;

A function with one parameter, a. Returns a function that takes b as a
parameter. Call: add 3 5;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 26

Partial Evaluation

Curried functions can be used to create new functions by partial
evaluation

Partial evaluation means that the function is evaluated with actual
parameters for one or more of the leftmost actual parameters

fun add5 x add 5 x;

Takes the actual parameter 5 and evaluates the add function with 5 as
the value of its first formal parameter. Returns a function that adds 5 to
its single parameter

val num = add5 10; (* sets num to 15 *)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 26

Haskell

Similar to ML (syntax, static scoped, strongly typed, type inferencing,
pattern matching)

Different from ML (and most other functional languages) in that it is
purely functional (e.g., no variables, no assignment statements, and no
side effects of any kind)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 26

Lazy Evaluation

Definition
A language is strict if it requires all actual parameters to be fully
evaluated.

Definition
A language is nonstrict if it does not have the strict requirement

Nonstrict languages are more efficient and allow some interesting
capabilities – infinite lists

Definition
Lazy evaluation = delaying argument evaluation in a function call until
the argument is needed.

Advantage: flexibility

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 26

F#

Based on Ocaml, which is a descendant of ML and Haskell

Fundamentally a functional language, but with imperative features and
supports OOP

Has a full-featured IDE, an extensive library of utilities, and
interoperates with other .NET languages

Includes tuples, lists, discriminated unions, records, and both mutable
and immutable arrays

Supports generic sequences, whose values can be created with
generators and through iteration

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 20 / 26

Why F# is Interesting

It builds on previous functional languages

It supports virtually all programming methodologies in widespread use
today

It is the first functional language that is designed for interoperability
with other widely used languages

At its release, it had an elaborate and well-developed IDE and library
of utility software

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 21 / 26

Support for Functional Programming

Support for functional programming is increasingly creeping into
imperative languages:

Anonymous functions (lambda expressions)
I JavaScript: leave the name out of a function definition
I C#: i => (i % 2) == 0 (returns true or false depending on whether

the parameter is even or odd)
I Python: lambda a, b : 2 * a - b

Python supports the higher-order functions filter and map (often
use lambda expressions as their first parameters)

map(lambda x : x ** 3, [2, 4, 6, 8])
Returns [8, 64, 216, 512]

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 26

Support for Functional Programming

Python supports partial function applications
from operator import add
add5 = partial (add, 5)

(the first line imports add as a function)
Use: add5(15)

Ruby Blocks
I Are effectively subprograms that are sent to methods, which makes

the method a higher-order subprogram
I A block can be converted to a subprogram object with lambda

times = lambda |a, b| a * b
Use: x = times.(3, 4) (sets x to 12)

I Times can be curried with
times5 = times.curry.(5)

Use: x5 = times5.(3) (sets x5 to 15)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 26

Comparing Functional and Imperative Languages

Imperative Languages:
Efficient execution
Complex semantics
Complex syntax
Concurrency is programmer designed

Functional Languages:

Simple semantics
Simple syntax
Less efficient execution
Programs can automatically be made concurrent

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 24 / 26

Summary

Functional programming languages use function application,
conditional expressions, recursion, and functional forms to control
program execution

LISP began as a purely functional language and later included
imperative features

Scheme is a relatively simple dialect of LISP that uses static scoping
exclusively

Common LISP is a large LISP-based language

ML is a static-scoped and strongly typed functional language that uses
type inference

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 25 / 26

Summary

Haskell is a lazy functional language supporting infinite lists and set
comprehension.

F# is a .NET functional language that also supports imperative and
object-oriented programming

Some primarily imperative languages now incorporate some support
for functional programming

Purely functional languages have advantages over imperative
alternatives, but still are not very widely used

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 26

