
Concepts of Programming Languages
Lecture 18 - Concurrency

Patrick Donnelly

Montana State University

Spring 2014

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 1 / 50

Administrivia

Assignments:

Programming #4 : due 04.28

Final Exam: 05.01 4:00-5:50p

Reading:

Chapter 13

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 2 / 50

Two roads diverged in a yellow wood,
And sorry I could not travel both ...

Robert Frost

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 3 / 50

Concurrency

Concurrency occurs at many levels

Machine instruction level
High-level language statement level
Unit level
Program level

More realistic

Can be more efficient

Carries unique, fundamental complexities

Traditionally studied in the context of operating systems

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 50

Concurrency Concepts

Example: client-server application such as web browsing.

Example
Web browser rendering a page

Page is a shared resource
Thread for each image load
Thread for text rendering
Cannot all write to page simultaneously
Thread for user input; e.g., Stop button

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 50

Timeline of Multiprocessor Architectures

Late 1950s - one general-purpose processor and one or more
special-purpose processors for input and output operations

Early 1960s - multiple complete processors, used for program-level
concurrency

Mid-1960s - multiple partial processors, used for instruction-level
concurrency

Single-Instruction Multiple-Data (SIMD) machines

Multiple-Instruction Multiple-Data (MIMD) machines

A primary focus of this chapter is shared memory MIMD machines
(multiprocessors)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 50

Categories of Concurrency

1 Physical concurrency - Multiple independent processors (multiple
threads of control)

2 Logical concurrency - The appearance of physical concurrency is
presented by time-sharing one processor (software can be
designed as if there were multiple threads of control)

Co-routines (quasi-concurrency) have a single thread of control

A thread of control in a program is the sequence of program points
reached as control flows through the program

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 50

Motivations for the Use of Concurrency

Multiprocessor computers capable of physical concurrency are now
widely used

Even if a machine has just one processor, a program written to use
concurrent execution can be faster than the same program written for
nonconcurrent execution

Involves a different way of designing software that can be very
useful-many real-world situations involve concurrency

Many program applications are now spread over multiple machines,
either locally or over a network

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 50

Concurrency Concepts

Definition
Multiprogramming: several programs loaded into memory and
executed in an interleaved manner

Definition
Scheduler : switches from one program or thread to another

Definition
Time-sharing: allow multiple users to communicate with a computer
simultaneously

Definition
Process: an execution context, including registers, activation stack,
next instruction to be executed, etc.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 50

Concurrency Concepts

Definition
Multiprogramming: several programs loaded into memory and
executed in an interleaved manner

Definition
Scheduler : switches from one program or thread to another

Definition
Time-sharing: allow multiple users to communicate with a computer
simultaneously

Definition
Process: an execution context, including registers, activation stack,
next instruction to be executed, etc.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 50

Concurrency Concepts

Definition
Multiprogramming: several programs loaded into memory and
executed in an interleaved manner

Definition
Scheduler : switches from one program or thread to another

Definition
Time-sharing: allow multiple users to communicate with a computer
simultaneously

Definition
Process: an execution context, including registers, activation stack,
next instruction to be executed, etc.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 50

Concurrency Concepts

Definition
Multiprogramming: several programs loaded into memory and
executed in an interleaved manner

Definition
Scheduler : switches from one program or thread to another

Definition
Time-sharing: allow multiple users to communicate with a computer
simultaneously

Definition
Process: an execution context, including registers, activation stack,
next instruction to be executed, etc.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 50

Concurrency Concepts

Definition
A concurrent program is a program designed to have two or more
execution contexts. Such a program is said to be multithreaded, since
more than one execution context can be active simultaneously.

Definition
Parallel program: Two or more threads simultaneously active.

Definition
Distributed program: designed so that different pieces are on
computers connected by a network.

Definition
Concurrency : a program with multiple, active threads

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 50

Concurrency Concepts

Definition
A concurrent program is a program designed to have two or more
execution contexts. Such a program is said to be multithreaded, since
more than one execution context can be active simultaneously.

Definition
Parallel program: Two or more threads simultaneously active.

Definition
Distributed program: designed so that different pieces are on
computers connected by a network.

Definition
Concurrency : a program with multiple, active threads

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 50

Concurrency Concepts

Definition
A concurrent program is a program designed to have two or more
execution contexts. Such a program is said to be multithreaded, since
more than one execution context can be active simultaneously.

Definition
Parallel program: Two or more threads simultaneously active.

Definition
Distributed program: designed so that different pieces are on
computers connected by a network.

Definition
Concurrency : a program with multiple, active threads

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 50

Concurrency Concepts

Definition
A concurrent program is a program designed to have two or more
execution contexts. Such a program is said to be multithreaded, since
more than one execution context can be active simultaneously.

Definition
Parallel program: Two or more threads simultaneously active.

Definition
Distributed program: designed so that different pieces are on
computers connected by a network.

Definition
Concurrency : a program with multiple, active threads

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 50

Tasks

Definition
A task or process or thread is a program unit that can be in
concurrent execution with other program units

Tasks differ from ordinary subprograms in that:
A task may be implicitly started
When a program unit starts the execution of a task, it is not
necessarily suspended
When a task’s execution is completed, control may not return to
the caller

Tasks usually work together

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 50

Tasks

Definition
A task or process or thread is a program unit that can be in
concurrent execution with other program units

Tasks differ from ordinary subprograms in that:
A task may be implicitly started
When a program unit starts the execution of a task, it is not
necessarily suspended
When a task’s execution is completed, control may not return to
the caller

Tasks usually work together

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 50

Tasks

Definition
Heavyweight tasks execute in their own address space.

Definition
Lightweight task all run in the same address space - more efficient

Definition
A task is disjoint if it does not communicate with or affect the
execution of any other task in the program in any way

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 12 / 50

Task Synchronization

A mechanism that controls the order in which tasks execute

Two kinds of synchronization
Cooperation synchronization
Competition synchronization

Task communication is necessary for synchronization, provided by:
Shared nonlocal variables
Parameters
Message passing

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 50

Kinds of Synchronization

Definition
Cooperation: Task A must wait for task B to complete some specific
activity before task A can continue its execution, e.g., the
producer-consumer problem

Definition
Competition: Two or more tasks must use some resource that cannot
be simultaneously used, e.g., a shared counter

Competition is usually provided by mutually exclusive access
(approaches are discussed later)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 14 / 50

Need for Competition Synchronization
Task A: TOTAL = TOTAL + 1

Task B: TOTAL = 2 * TOTAL

Depending on order, there could be four different results

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 50

Scheduler

Providing synchronization requires a mechanism for delaying task
execution

Task execution control is maintained by a program called the
scheduler, which maps task execution onto available processors

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 50

States of a Thread

1 Created (New): but not yet ready to run
2 Runnable (Ready): ready to run; awaiting a processor
3 Running: executing
4 Blocked: waiting on some resource
5 Terminated (Dead): stopped; no longer active in any sense

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 50

Threads

Inter-thread communication needs to occur:
1 Thread requires exclusive access to some resource
2 Thread needs to exchange data with another thread

Can communicate via:
1 Shared variables
2 Message passing
3 Parameters

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 50

Race Condition

Definition
A race condition occurs when the resulting value of a variable
depends on the execution order of two or more threads.

Example
c = c + 1
Machine level:

1 load c
2 add 1
3 store c

If c initially 0:
With 2 threads, can get 1 or 2
With n threads, can get 1, 2, . . . , n

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 50

Deadlock

Definition
A deadlock occurs when a thread is waiting for an event that will never
happen.

Necessary conditions for a deadlock to exist:
1 Threads claim exclusive access to resources.
2 Threads hold some resources while waiting for others.
3 Resources may not be removed from waiting threads

(preemption).
4 A circular chain of threads exists in which each thread holds a

resource needed by the next thread in the chain.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 20 / 50

Design Issues for Concurrency

Competition and cooperation synchronization

Controlling task scheduling

How can an application influence task scheduling

How and when tasks start and end execution

How and when are tasks created

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 21 / 50

Methods of Providing Synchronization

Semaphores - data structure used for controlling access, by multiple
processes, to a common resource.

Monitors - abstract data type to encapsulate the shared data and its
operations in order to restrict access.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 50

Methods of Providing Synchronization

Semaphores - data structure used for controlling access, by multiple
processes, to a common resource.

Monitors - abstract data type to encapsulate the shared data and its
operations in order to restrict access.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 50

Semaphores

Definition
A semaphore semaphore is a data structure consisting of a counter
and a queue for storing task descriptors.

A task descriptor is a data structure that stores all of the relevant
information about the execution state of the task

Originally defined by Dijkstra in 1968.

Operations:
P(s) – if s > 0 then s– else enqueue thread
V(s) – if a thread is enqueued then dequeue it else s++

Binary semaphore

Counting semaphore

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 50

Concurrent Pascal Example

program SimpleProducerConsumer;
var buffer : string;

full : semaphore = 0;
empty : semaphore = 1;

...
begin

cobegin
Producer; Consumer;

coend;
end.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 24 / 50

Concurrent Pascal Example

procedure Producer;
var tmp : string
begin

while (true) do begin
produce(tmp);
P(empty); { begin critical section }
buffer := tmp;
V(full); { end critical section }

end;
end;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 25 / 50

Concurrent Pascal Example

procedure Consumer;
var tmp : string
begin

while (true) do begin
P(full); { begin critical section }
tmp := buffer;
V(empty); { end critical section }
consume(tmp);

end;
end;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 50

Concurrent Pascal Example

program ProducerConsumer;
const size = 5;
var buffer : array[1..size] of string;

inn : integer = 0;
out : integer = 0;
lock : semaphore = 1;
nonfull : semaphore = size;
nonempty : semaphore = 0;

...

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 27 / 50

Concurrent Pascal Example

procedure Producer;
var tmp : string
begin

while (true) do begin
produce(tmp);
P(nonfull);
P(lock); { begin critical section }
inn := inn mod size + 1;
buffer[inn] := tmp;
V(lock); { end critical section }
V(nonempty);

end;
end;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 28 / 50

Concurrent Pascal Example

procedure Consumer;
var tmp : string
begin

while (true) do begin
P(nonempty);
P(lock); { begin critical section }
out = out mod size + 1;
tmp := buffer[out];
V(lock); { end critical section }
V(nonfull);
consume(tmp);

end;
end;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 29 / 50

Evaluation of Semaphores

Misuse of semaphores can cause failures in cooperation
synchronization, e.g., the buffer can overflow.

Misuse of semaphores can cause failures in competition
synchronization, e.g., the program can deadlock if the release is left
out

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 50

Methods of Providing Synchronization

Semaphores - data structure used for controlling access, by multiple
processes, to a common resource.

Monitors - abstract data type to encapsulate the shared data and its
operations in order to restrict access.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 31 / 50

Monitors

Encapsulates a shared resource together with access functions.

Used in Ada, Java, C#

Locking is automatic.

Monitor implementation guarantee synchronized access by allowing
only one access at a time

Calls to monitor procedures are implicitly queued if the monitor is busy
at the time of the call

Condition – thread queue
signal
wait

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 32 / 50

Concurrent Pascal Example

monitor Buffer;
const size = 5;
var buffer : array[1..size] of string;

in : integer = 0;
out : integer = 0;
count : integer = 0;
nonfull : condition;
nonempty : condition;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 33 / 50

Concurrent Pascal Example

procedure put(s : string);
begin

if (count = size) then
wait(nonfull);

in := in mod size + 1;
buffer[in] := tmp;
count := count + 1;
signal(nonempty);

end;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 34 / 50

Concurrent Pascal Example

function get : string;
var tmp : string
begin

if (count = 0) then wait(nonempty);
out = out mod size + 1;
tmp := buffer[out];
count := count - 1;
signal(nonfull);
get := tmp;

end;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 35 / 50

Java Threads

The concurrent units in Java are methods named run
A run method code can be in concurrent execution with other such
methods
The process in which the run methods execute is called a thread

class myThread extends Thread
public void run () {...}
}
...
Thread myTh = new MyThread ();
myTh.start();

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 36 / 50

Controlling Thread Execution

The Thread class has several methods to control the execution of
threads

The yield is a request from the running thread to voluntarily
surrender the processor
The sleep method can be used by the caller of the method to
block the thread
The join method is used to force a method to delay its execution
until the run method of another thread has completed its execution

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 37 / 50

States of a Java Thread

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 38 / 50

Java Example: Bouncing Balls

State of a ball in motion:
Location: x , y coordinates
Direction and velocity: dx , dy
Size in pixels
Color (fun!)

Ball methods:
Constructor
move: one step (delta)
paint

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 39 / 50

Java Example: Bouncing Balls

State of a ball in motion:
Location: x , y coordinates
Direction and velocity: dx , dy
Size in pixels
Color (fun!)

Ball methods:
Constructor
move: one step (delta)
paint

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 39 / 50

Java Ball Example

public class Ball {

Color color = Color.red;
int x;
int y;
int diameter = 10;
int dx = 3;
int dy = 6;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 40 / 50

Java Ball Example

public Ball (int ix, int iy) {
super();
x = ix;
y = iy;
color = new Color(x % 256, y % 256,

(x+y) % 256);
dx = x % 10 + 1;
dy = y % 10 + 1;

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 41 / 50

Java Ball Example

public void move () {
if (x < 0 || x >= BouncingBalls.width)

dx = - dx;
if (y < 0 || y >= BouncingBalls.height)

dy = - dy;
x += dx;
y += dy;

}

public void paint (Graphics g) {
g.setColor(color);
g.fillOval(x, y, diameter, diameter);

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 42 / 50

Java Ball Example

public class BouncingBalls extends JPanel {
public final static int width = 500;
public final static int height = 400;
private Ball ball = new Ball(128, 127);
private Vector<Ball> list = new Vector();

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 43 / 50

Java Ball Example

public BouncingBalls () {
setPreferredSize(new

Dimension(width, height));
list.add(ball);
addMouseListener(new MouseHandler());
BallThread bt = new BallThread();
bt.start();

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 44 / 50

Java Ball Example

private class MouseHandler
extends MouseAdapter {

public void mousePressed(MouseEvent e) {
Ball b = new Ball(e.getX(), e.getY());
list.add(b);

} // mousePressed
} // MouseHandler

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 45 / 50

Java Ball Example

private class BallThread extends Thread {
public boolean cont;
public void run() {

cont = true;
while (cont) {

for (Ball b : list) {
b.move();

}
repaint();
try { Thread.sleep(50);
} catch

(InterruptedException exc) { }
}

}}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 46 / 50

Java Ball Example

public synchronized void
paintChildren(Graphics g) {

for (Ball b : list) {
b.paint(g);

}
}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 47 / 50

Java Ball Example

public static void main(String[] args) {
JFrame frame = new

JFrame("Bouncing Balls");
frame.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add(

new BouncingBalls());
frame.setLocation(50, 50);
frame.pack();
frame.setVisible(true);

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 48 / 50

C# Threads

Loosely based on Java but there are significant differences

Basic thread operations
Any method can run in its own thread
A thread is created by creating a Thread object
Creating a thread does not start its concurrent execution; it must
be requested through the Start method
A thread can be made to wait for another thread to finish with Join
A thread can be suspended with Sleep
A thread can be terminated with Abort

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 49 / 50

Synchronizing Threads

Three ways to synchronize C# threads

The Interlocked class
Used when the only operations that need to be synchronized are
incrementing or decrementing of an integer

The lock statement:
Used to mark a critical section of code in a thread:

lock (expression){...}

The Monitor class:
Provides four methods that can be used to provide more
sophisticated synchronization

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 50 / 50

C#’s Concurrency Evaluation

An advance over Java threads, e.g., any method can run its own thread

Thread termination is cleaner than in Java

Synchronization is more sophisticated

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 51 / 50

Summary
Concurrent execution can be at the instruction, statement, or
subprogram level

Physical concurrency: when multiple processors are used to execute
concurrent units

Logical concurrency: concurrent united are executed on a single
processor

Two primary facilities to support subprogram concurrency: competition
synchronization and cooperation synchronization

Mechanisms: semaphores, monitors, rendezvous, threads

High-Performance Fortran provides statements for specifying how data
is to be distributed over the memory units connected to multiple
processors

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 52 / 50

