Chapter 1

Introduction to Signals and Systems

Signals and Systems

- The concept and theory of signals and systems are needed in almost all engineering and scientific disciplines.

Examples of 1-D Signals

ECG signal

Examples of 2-D Signals

Gray-level Image

Biomedical Image

Color Image

- Intensity of the image at location (x, y) can be expressed as $I(x, t)$. Two independent variables (x and y), the image is a two dimensional signal.

Signals and Systemsz

An electronic communications system

SIGNALS

- A signal is a function representing a physical quantity or variable (information about the behavior or nature of the phenomenon). Signals may describe a wide variety of physical phenomena.
- Mathematically, a signal (dependent variable) is represented as a function of an independent variable t (time) denoted $x(t)$

CLASSIFICATION OF SIGNALS

1. Continuous-Time and Discrete-Time Signals

A continuous-time (CT) signal is one that is present at all instants in time or space.
A discrete-time (DT) signal is only present at discrete points in time or space.

Continuous-Time Signal
2. Analog and Digital Signals:
3. Real and Complex Signals: $x(t)=x_{1}(t)+j x_{2}(t)$ where $x_{1}(t)$ and $x_{2}(t)$ are real signals and $j=\sqrt{-1}$

4. Deterministic and Random Signals:

- Deterministic signals have values completely specified for any given time and can modeled by a known function of time.
- Random signals take random values at any given time and must be characterized statistically.

5. Even and Odd Signals:

$\boldsymbol{x}(\boldsymbol{t})$ is even signal if $\boldsymbol{x}(-\boldsymbol{t})=\boldsymbol{x}(\boldsymbol{t})(\boldsymbol{x}[-\boldsymbol{n}]=\boldsymbol{x}[\boldsymbol{n}])$
even signal is identical to its time-reversed counterpart about the origin
$\boldsymbol{x}(\boldsymbol{t})$ is odd signal if $\boldsymbol{x}(-\boldsymbol{t})=-\boldsymbol{x}(\boldsymbol{t})(\boldsymbol{x}[-\boldsymbol{n}]=-\boldsymbol{x}[\boldsymbol{n}])$
 even signals

$$
x(t)=x_{e}(t)+x_{o}(t) \text { with } x_{e}(t)=\frac{1}{2}[x(t)+x(-t)] \text { and } x_{o}(t)=\frac{1}{2}[x(t)-x(-t)]
$$

CLASSIFICATION OF SIGNALS

Example: Decomposition a signal into Even and Odd parts

CLASSIFICATION OF SIGNALS2

6. Periodic and Non-periodic Signals:

 $\boldsymbol{x}(\boldsymbol{t})(\boldsymbol{x}[n])$ is periodic with period $\mathrm{T}(\mathrm{N})$ if The fundamental period T , of is the smallest positive value of T such that $\boldsymbol{x}(\boldsymbol{t}+\boldsymbol{m T})=\boldsymbol{x}(\boldsymbol{t})$

$$
x(t+T)=x(t) T>0
$$

$\boldsymbol{x}[\boldsymbol{n}+\boldsymbol{N}]=\boldsymbol{x}[\boldsymbol{n}] \mathrm{N}$ integer

Examples:Determine whether or not each of the following signals is periodic:

$$
x(t)=2 \cos (2 t+\pi / 5)
$$

This signal is a CT sinusoid so it is periodic. Its fundamental angular frequency is $2 \mathrm{rad} / \mathrm{sec}$ and hence its fundamental period is

$$
\begin{aligned}
& x[n]=\cos (3 n) \\
& x\left[n+N_{0}\right]=\cos \left(3\left[n+N_{0}\right]\right)=\cos \left(3 n+3 N_{0}\right)=\cos (3 n+2 m \pi)
\end{aligned}
$$

This suggests that $\quad 3 N_{0}=2 m \pi \rightarrow N_{0}=\frac{2}{3} m \pi$
Since π is irrational $\nexists m \in \mathbb{Z}$ s.t. $\frac{2}{3} m \pi \in \mathbb{Z}^{+}$
therefore $x[n]$ is not periodic.

$$
T=\frac{2 \pi}{\omega_{0}}=\frac{2 \pi}{2}=\pi
$$

CLASSIFICATION OF SIGNALS 3

7. Energy and Power Signals:
 Continuous

Total Energy E_{∞} of $\boldsymbol{x}(\boldsymbol{t}): \quad E_{\infty}=\int_{-\infty}^{\infty}|x(t)|^{2} d t$ (joules)
Total averaged Power P_{∞} of $\boldsymbol{x}(\boldsymbol{t}): P_{\infty}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|x(t)|^{2} d t$ (watts)
$\boldsymbol{x}(\boldsymbol{t})$ is an energy signal if $0<E_{\infty}<\infty$ then $P_{\infty}=\lim _{T \rightarrow \infty} \frac{E_{\infty}}{2 T}=0$ Signals with finite total energy $\boldsymbol{x}(\boldsymbol{t})$ is an power signal if $0<P_{\infty}<\infty$ then $E_{\infty}=\infty \quad$ signals with finite average power $\boldsymbol{x}(\boldsymbol{t})$ can be with neither E_{∞} nor P_{∞} finite.

$$
\begin{array}{l|l}
\text { Example: } x(t)=e^{-2 t} u(t) & \begin{array}{l}
\text { Example: } \quad x[n]=\cos \left(\frac{\pi}{4} n\right) \\
E_{\infty}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}\left|e^{-2 t} u(t)\right|^{2} d t=\int_{0}^{\infty} e^{-4 t} d t=\left.\frac{1}{-4} e^{-4 t}\right|_{0} ^{\infty}=\frac{1}{4} \\
P_{\infty}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|x(t)|^{2} d t=\left.\lim _{T \rightarrow \infty} \frac{1}{-8 T} e^{-4 t}\right|_{0} ^{T}=\lim _{T \rightarrow \infty} \frac{1}{-8 T}\left[e^{-4 T}-e^{0}\right]=0=\cos ^{2}(\alpha)-\sin ^{2}(\alpha) \\
1=\cos ^{2}(\alpha)+\sin ^{2}(\alpha)
\end{array} \\
\text { or } \quad P_{\infty}=\lim _{T \rightarrow \infty} \frac{E_{\infty}}{2 T}=0 & \sum_{n=-\infty}^{\infty}|x[n]|^{2}=\sum_{n=-\infty}^{\infty}\left|\cos \left(\frac{\pi}{4} n\right)\right|^{2}=\sum_{n=-\infty}^{\infty} \cos ^{2}\left(\frac{\pi}{4} n\right)=\sum_{n=-\infty}^{\infty} \frac{1+\cos \left(\frac{\pi}{2} n\right)}{2} \\
E_{\infty}=\sum_{n=-\infty}^{\infty} \frac{1}{2}+\sum_{n=-\infty}^{\infty} \frac{\cos \left(\frac{\pi}{2} n\right)}{2}=\infty \\
P_{\infty}=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x[n]|^{2}=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} \frac{1+\cos \left(\frac{\pi}{2} n\right)}{2} \\
P_{\infty} \text { is zero, because } E_{\infty}<\infty
\end{array} \quad \begin{array}{ll}
\text { Sum of cos on a period is zero }
\end{array}
$$

Discrete

$$
E_{\infty}=\sum_{n=-\infty}^{\infty}|x[n]|^{2}
$$

$P_{\infty}=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x[n]|^{2}$

Transformation of the independent Variable

A general form of transformation of independent variable is $x(\beta t+\alpha)$, where α and β are given numbers.

$$
1 \text { Time shift }(\beta=1, \alpha \neq 0)
$$

The original and the shifted signals are identical in shape, but that are displaced or shifted relative to each other (delayed or advanced).

Such signals arise in applications such radar, sonar and seismic signal processing. Shifted signal due to the transmission time.

2 Time reversal (Reflection) $\beta=-1$
The reflected signal $x(-t)$ or $x[-n]$ is obtained from the signal $x(t)$ or $x[n]$ by a reflection about $t=0$ or $n=0$

3 Time Scaling

The time-scaled signal $x(\beta t)$ is obtained from the signal $x(t)$ by multiplying the time variable by a constant β

if $\beta>1$: Compressing
if $\beta<1$: Stretching

Transformation of the independent Variablez

Example1: Time Shift The signal $x(t+1)$ can be obtained by shifting $x(t)$ to the left by one unit

Example2: Time reversal The signal $x(-t+1)$ can be obtained from $x(t)$ using the mathematical definition

t	$-\boldsymbol{t}+\mathbf{1}$	$x(-t+\mathbf{1})$
-2	3.0	0
$-\mathbf{1 . 5}$	2.5	0
$-\mathbf{1}$	2.0	0
$-\mathbf{0 . 5}$	1.5	0.5
$\mathbf{0}$	1.0	1
$\mathbf{0 . 5}$	0.5	1
$\mathbf{1}$	0.0	1
$\mathbf{1 . 5}$	-0.5	0
$\mathbf{2}$	-1.0	0
$\mathbf{2 . 5}$	-1.5	0
$\mathbf{3}$	-2.0	0

First plot $x(t+1)$, then reflect.

Transformation of the independent Variable ${ }_{3}$

Example3: Time Compression Find $x\left(\frac{3}{2} t\right)\left(|\beta|=\frac{3}{2}>1\right.$ linear compression by a factor of $\left.\frac{1}{(3 / 2)}=\frac{2}{3}\right)$

Matlab

Time-Shitted Signal

Time-Reversed Signal

BASIC SIGNALS

1. The Unit Step signal (Heaviside unit function):
2. The Unit Impulse signal (Dirac delta function):

$$
\begin{gathered}
\boldsymbol{\delta}(\boldsymbol{t})=\left\{\begin{array}{lll}
\boldsymbol{\infty} & \boldsymbol{t}=\mathbf{0} \\
\mathbf{0} & \boldsymbol{t} \neq \mathbf{0}
\end{array}\right. \\
\int_{0^{-}}^{0^{+}} \boldsymbol{\delta}(\boldsymbol{t}) d t=1 \quad \xrightarrow[0]{\delta_{\Delta}(t)} \\
\prod_{\Delta}^{\frac{1}{2}} \prod_{\Delta}^{\delta(t)}=\underset{0}{\lim _{\Delta \rightarrow 0} \delta_{\Delta}(t),} \xrightarrow{\substack{\boldsymbol{\delta}(\boldsymbol{t}) \\
\text { Amplitude infinite } \\
\text { and area one }}}
\end{gathered}
$$

$$
\text { properties of } \boldsymbol{\delta}(\boldsymbol{t})\left\{\begin{aligned}
\boldsymbol{\delta}(\boldsymbol{a} \boldsymbol{t}) & =\frac{1}{|a|} \boldsymbol{\delta}(\boldsymbol{t}) \\
\boldsymbol{\delta}(-\boldsymbol{t}) & =\boldsymbol{\delta}(\boldsymbol{t}) \\
x(t) \boldsymbol{\delta}(\boldsymbol{t}) & =x(0) \boldsymbol{\delta}(\boldsymbol{t})
\end{aligned}\right.
$$

$$
\int_{-\infty}^{t} \boldsymbol{\delta}(\boldsymbol{t}) d t=\left\{\begin{array}{ll}
\mathbf{1} & \boldsymbol{t}>\mathbf{0} \\
\mathbf{0} & \boldsymbol{t}<\mathbf{0}
\end{array}=u(t) \rightarrow \boldsymbol{\delta}(\boldsymbol{t})=\frac{\boldsymbol{d} \boldsymbol{u}(\boldsymbol{t})}{\boldsymbol{d} \boldsymbol{t}}\right.
$$

$$
\begin{aligned}
& x[n] \delta[n]=x[0] \delta[n] \\
& \delta[n]=u[n]-u[n-1] \\
& u[n]=\sum_{k=-\infty}^{n} \delta[k]
\end{aligned}
$$

$$
x[n] \delta[n-k]=x[k] \delta[n]
$$

$$
\begin{aligned}
& u(t)=\left\{\begin{array}{ll}
1 & t>0 \\
0 & t<0
\end{array} \xrightarrow[0]{\square}\right. \\
& u[n]= \begin{cases}\mathbf{1} & n \geq \mathbf{0} \\
\mathbf{0} & n<\mathbf{0}\end{cases}
\end{aligned}
$$

BASIC SIGNALS 3

3. Complex Exponential Signals:

> Using Euler's formula $\left(e^{\boldsymbol{j \theta}}=\cos (\theta)+\boldsymbol{j} \sin (\theta)\right)$
> $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{e}^{\boldsymbol{j} \boldsymbol{w}_{\boldsymbol{o}} \boldsymbol{t}}=\boldsymbol{\operatorname { c o s }}\left(\boldsymbol{w}_{\boldsymbol{o}} \boldsymbol{t}\right)+\boldsymbol{j} \boldsymbol{\operatorname { s i n }}\left(\boldsymbol{w}_{\boldsymbol{o}} \boldsymbol{t}\right)$ is a complex signal $\boldsymbol{x}(\boldsymbol{t})$ is periodic with fundamental period $T_{0}=\frac{2 \pi}{w_{0}}$

Complex Exponential Sequences

$$
\boldsymbol{x}[\boldsymbol{n}]=\boldsymbol{e}^{\boldsymbol{j} \boldsymbol{\Omega}_{\boldsymbol{o}} \boldsymbol{n}}=\boldsymbol{\operatorname { c o s }}\left(\boldsymbol{\Omega}_{\boldsymbol{o}} \boldsymbol{n}\right)+\boldsymbol{j} \boldsymbol{\operatorname { s i n }}\left(\boldsymbol{\Omega}_{\boldsymbol{o}} \boldsymbol{n}\right) \quad \text { Period } N=m \frac{2 \pi}{\boldsymbol{\Omega}_{o}}
$$

4. Sinusoidal Signals:
$x(t)$ has a fundamental
$\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{A} \boldsymbol{\operatorname { c o s }}\left(\boldsymbol{w}_{\boldsymbol{o}} \boldsymbol{t}+\boldsymbol{\theta}\right)$

angular frequency $w_{0}=2 \pi f_{0}$

Sinusoidal Sequences: $\quad x[n]=A \cos \left(\Omega_{o} n+\theta\right)$

Fundamental Period and Frequency

$$
x(t)=A \cos \left(w_{o} t+\theta\right) \text { with } \quad w_{o}=2 \pi F_{0}=\frac{2 \pi}{T_{0}}
$$

If we decrease the value of the magnitude of ω_{0}, we slow down the rate of oscillations and hence increase the period T_{0}. Alternatively, if we increase the value of the magnitude of ω_{0}, we increase the rate of oscillations and hence decrease the period T_{0}.

$$
\begin{aligned}
& \omega_{1}>\omega_{2}>\omega_{3} \\
& T_{1}<T_{2}<T_{3}
\end{aligned}
$$

SYSTEMS

- A system is a mathematical model of a physical process (an interconnection of components, devices, or subsystems) that transforms an input signal (excitation, single or multiple) into an output signal (response, single or multiple).

Example 1: RC circuit

$y(t)=v_{c}(t)=\frac{1}{C} \int i(t) d t \rightarrow i(t)=C \frac{d v_{c}(t)}{d t}$
$i(t)=\frac{v_{R}(t)}{R}=\frac{x(t)-y(t)}{R}=C \frac{d y(t)}{d t}$
$\rightarrow \frac{d y(t)}{d t}+\frac{1}{R C} y(t)=\frac{1}{R C} x(t)$
differential equation describing the relationship
between $\boldsymbol{x}(\boldsymbol{t})$ and $\boldsymbol{y}(\boldsymbol{t})$

System with multiple input and output signals

Example 2: An automobile

An automobile with mass m responding to an applied force $f(t)$ (input) from the engine and to a retarding frictional force $\rho v(t)$ proportional to the automobile's velocity $v(t)$ (output).

$$
\begin{aligned}
& \frac{d v(t)}{d t}=\frac{1}{m}[f(t)-\rho v(t)] \\
\rightarrow & \frac{d v(t)}{d t}+\frac{\rho}{m} v(t)=\frac{1}{m} f(t) \\
\rightarrow & \frac{d y(t)}{d t}+\frac{\rho}{m} y(t)=\frac{1}{m} x(t)
\end{aligned}
$$

differential equation
describing the relationship between $\boldsymbol{f}(\boldsymbol{t})$ and $\boldsymbol{v}(\boldsymbol{t})$

CLASSIFICATION OF SYSTEMS

1. Continuous-Time and Discrete-Time Systems:

If the input and output signals are continuous-time signals, then the system is called a
 continuous-time system. If the input and output signals are discrete-time signals or sequences then the system is called a discrete-time system.

2. Systems with Memory and without Memory

\boldsymbol{A} system is memoryless if its output at any time depends only at that same time. Otherwise, the system is said to have memory.
Memoryless system: A resistor R with a current as input $\boldsymbol{x}(\boldsymbol{t})$ and a voltage as output $\boldsymbol{y}(\boldsymbol{t})$

$$
y[n]=2 x[n]-x^{2}[n]
$$

system with memory: a capacitor \boldsymbol{C} with the current as input $\boldsymbol{x}(\boldsymbol{t})$ and voltage as output $\boldsymbol{y}(\boldsymbol{t})$
 the accumulator $y[n]=\sum_{k=-\infty}^{n} x[k]=y[n-1]+x[n]$

3. Causal and Non-causal Systems:

A system is causal if the output at any time depends only on values of the input at the present time and in the past (non-anticipative of future values of the input).

Non-causal systems

$$
y(t)=x(t+1) \quad y[n]=x[n+2] \quad y[n]=x[-n]
$$

causal systems	the current value of the inpur x(t) influences $y(t)=x(t)+x(t-1)$ y $y[n]=x[n-2]$
$y(t)=x(t) \cdot \boldsymbol{c o s}(t+1)$	

CLASSIFICATION OF SYSTEMS2

4. Invertibility and Inverse Systems:

A system is said to be invertible if distinct inputs lead to distinct outputs.
Examples:

- an invertible continuous-time system is $\boldsymbol{y}(\boldsymbol{t})=\mathbf{2 x}(\boldsymbol{t})$

$$
y(t)=2 x(t) \rightarrow w(t)=x(t)=0.5 y(t)
$$

- a Non-invertible continuous-time system is $\boldsymbol{y}(\boldsymbol{t})=\boldsymbol{x}^{2}(\boldsymbol{t})$
we cannot determine the sign of the input from knowledge of the output.
- the accumulator (invertible)

- Non-invertible $\boldsymbol{y}(\boldsymbol{t})=\mathbf{0}$ For different inputs $\boldsymbol{x}(\boldsymbol{t})$ the output $\boldsymbol{y}(\boldsymbol{t})$ is zero

5. Linear Systems and Nonlinear Systems:

A system is linear if it possesses the property of superposition (Homogeneity and additivity)
$x_{1}(t)$
$x_{2}(t)$

$a x_{1}(t)+b x_{2}(t)$$\longrightarrow$ System \quad| $y_{1}(t)$ |
| :--- |
| $y_{2}(t)$ |
| $a y_{1}(t)+b y_{2}(t)$ |\quad Examples: | $y(t)=x^{2}(t)$ is a nonlinear system |
| :--- |
| $y(t)=\alpha x(t)$ is a linear system |

CLASSIFICATION OF SYSTEMS 3

6. Time-Invariant and Time-Varying Systems:

A system is called time-invariant if a time shift (delay or advance) in the input signal causes the same time shift in the output signal (behavior and characteristics of the system are fixed over time).

If the system is linear and also time-invariant, then it is called a linear rime-invariant system (LTI system).

7. Stability

A system is bounded-input/bounded-output (BIBO) stable if for any bounded input $\boldsymbol{x}\left(|\boldsymbol{x}| \leq k_{1}\right)$ the corresponding output y is also bounded ($|\mathrm{y}| \leq k_{2}$). A stable system is one in which small inputs lead to responses that do not diverge.

Examples:

$$
y(t)=e^{x(t)}
$$

For bounded input $|\boldsymbol{x}(\boldsymbol{t})|<\boldsymbol{B}$ the output $\boldsymbol{e}^{-\boldsymbol{B}}<|\boldsymbol{y}(\boldsymbol{t})|<\boldsymbol{e}^{\boldsymbol{B}}$
For bounded input $(\boldsymbol{x}(\boldsymbol{t})=\mathbf{1})$ the output $\boldsymbol{y}(\boldsymbol{t})=\boldsymbol{t}$ unbounded. unstable.

Examples: \quad For the system: $\boldsymbol{y}(\boldsymbol{t})=\boldsymbol{\operatorname { s i n }}[\boldsymbol{x}(\boldsymbol{t})]$

$$
\begin{aligned}
& \text { For input } x_{1}(t): y_{1}(t)=\sin \left[x_{1}(t)\right] \\
& \text { For input } x_{2}(t)=x_{1}\left(t-t_{0}\right) \\
& y_{2}(t)=\sin \left[x_{2}(t)\right]=\sin \left[x_{1}\left(t-t_{0}\right)\right]
\end{aligned}
$$

Delaying: $y_{1}(t): y_{1}\left(t-t_{0}\right)=\sin \left[x_{1}\left(t-t_{0}\right)\right]=y_{2}(t)$
system is time invariant.

$$
y(t)=t x(t)
$$ bounded.

Interconnections of Systems

- Many real systems are built as interconnections of several subsystems.

Interconnection of two systems

series (cascade) interconnection

series-parallel interconnection

parallel interconnection

Feedback interconnection

Background on complex numbers

- Cartesian (rectangular) Form: $z=x+j y \quad j=\sqrt{-1}$
- Polar form: $Z=r e^{j \theta}$

$$
r=|z|=\sqrt{x^{2}+y^{2}} \quad \text { Magnitude of } z
$$

$$
\theta=\operatorname{atan}(y / x) \text { Phase (argument) of } z
$$

- Euler formula: $\quad e^{j \theta}=\cos (\theta)+j \sin (\theta)$

$$
z=|z|(\cos (\theta)+j \sin (\theta))
$$

- Polar form is more convenient for multiplication and divisions
- Cartesian form is more convenient for addition ad subtraction

Background on complex numbersz

Example:

- Express the following number in Cartesian form: $\quad z=\sqrt{2} e^{j \pi / 4} \quad z=0.5 e^{-j \pi}$

$$
\begin{gathered}
z=\sqrt{2} e^{j \pi / 4}=|z| e^{j \theta}=\sqrt{2}(\cos (\pi / 4)+j \sin (\pi / 4))=1+j \\
z=0.5 e^{-j \pi}=|z| e^{j \theta}=0.5(\cos (-\pi)+j \sin (-\pi))=-0.5
\end{gathered}
$$

- Express the following number in polar form: $\quad z=5 \quad z=1+j$
$z=5=\sqrt{5^{2}+0^{2}} e^{j \operatorname{atan}(0 / 5)}=5 e^{j 0}=5(\cos (0)+j \sin (0))$
$z=1+j=\sqrt{1^{2}+1^{2}} e^{j \operatorname{atan}(1 / 1)}=\sqrt{2} e^{j \pi / 4}=\sqrt{2}(\cos (\pi / 4)+j \sin (\pi / 4))$

