University .	name	
King Saud University College of Science Department of Physics and Ast	ronomy	1957

1 st term 1438-1439H	Physics 103	1 st mid term
Thursday 6 /2/ 1439 H	26 th October 2017	7:00 – 8:30 PM

Submit all pages to the Examiner/ Invigilator

Name	
University number	
Section/ Dr Name	

Write your answers for each question in CAPITAL LETTERS in the table given

Q.1	Q. 2	Q. 3	Q. 4	Q. 5
0.(0.7	0.0	0.0	0.10
Q. 6	Q. 7	Q. 8	Q. 9	Q. 10
Q. 11	Q. 12	Q. 13	Q. 14	Q. 15

Take $g = 9.8 \text{ ms}^{-2}$ where ever needed

	L .					
1	A car goes on a certain road with an average speed of 40 km/h and returns along the same road with an average speed of 60 km/h. The average speed for the round trip is:					
	A) 53 km/h	B) 48 km/h	C) 42 km/h	D) 32 km/h	E) 24 km/h	
2	A car is moving with a velocity of 72 km/h. If its velocity is reduced to 36 km/h after covering a distance of					
	200 m, its accelerati	on is:				
	A) - 1.5 m/s ²	B) - 2.5 m/s ²	C) - 3.2 m/s ²	D) - 0.75 m/s ²	E) - 0.5 m/s ²	
3	A rock is released the seconds of its free-face	from rest from the top all?	p of a very high cliff.	How far does the	rock travel in the first 7	
	A) 330 m	B) 132 m	C) 240 m	D) 314 m	E) 397 m	
4	A particle moves in the <i>xy</i> plane with a constant acceleration given by $\mathbf{a} = -4\mathbf{j} \text{ m/s}^2$. At $t = 0$, its position and velocity are 10 i m and $(-2\mathbf{i} + 8\mathbf{j})$ m/s, respectively. The distance from the origin to the particle at $t = 2$ seconds is:					
	A) 12.8 m	B) 8.2 m	C) 5.1 m	D) 2.3 m	E) 10 m	
5	A stone is thrown he at a point 120 m hor A) 33 m	prizontally with veloci izontally away from a B) 27 m	ty of 40 m/s from the t nd below the point of t C) 44 m	op of a building. The hrowing. The height D) 20 m	e stone strikes the ground of the building is: E) 78 m	
6	A car moving with	a constant speed of	60 m/s completes or	ne lap around a circ	cular track in 50 s. The	
	magnitude of the ac	celeration of the car is	:	•		
	A) 6.3 m/s ²	B) 8.8 m/s ²	C) 3.4 m/s ²	D) 7.5 m/s ²	E) 9.4 m/s ²	
7	A car travels 20 k	and the north and the	en 35 km in a direc	tion 60° west of no	orth. The magnitude of	
	displacement of the	car 1s:				
	A) 48.2 km	B) 40.9 km	C) 56.3 km	D) 36.7 km	E) 11.8 km	
8	If vector $\mathbf{A} = 2\mathbf{i} + 6\mathbf{j}$	and vector $\mathbf{B} = 4\mathbf{i} - 2\mathbf{j}$.	, then the magnitude of	f vector $2\mathbf{A} + \mathbf{B}$ is:		
Ũ	A) 32 1	B) 12 8	C) 14	D) 7 2	E) 22.2	
	11) 52.1	D) 12.0	C) 14	D) 1.2	L) 22.2	
9	A cubic box with an	edge of 1.5ft has a vo	olume of:			
	A) $3.28 \times 10^3 \text{ m}^3$	B) $7.55 \times 10^2 \text{ m}^3$	C) $9.55 \times 10^{-2} \text{ m}^3$	D) $22.7 \times 10^{-2} \text{ m}^3$	E) $44 \times 10^{-2} \text{ m}^{3}$	
	$(N.B. \ 1m = 3.28ft)$,	-,			
10	In Einstein's equation	on $E = mc^2$ where m.	mass and c: speed of 1	ight The dimensions	of energy E is:	
10		\mathbf{D}) \mathbf{D}	$C)$ M^2	D) $M^{2}T^{2}$		
	A) ML I	D) ML1	C) ML	D) ML I	E) ML1	
11	A ball is thrown upward. While the ball is in free fall, does its acceleration					
	A) decrease	B) remain constant	C) increase	D) increase and then	E) decrease and then	
		_,	-,	decrease	increase	
12	Two boys (Ali & O	mar) start at one end	of a street the origin	run to the other end	then head back. On the	
14	way back Ali is ahead of Omar. Which statement is correct about the distances run and the displacements from the origin?					
	from the origin?	ead of Omar. Which	statement is correct at	bout the distances fu	n and the displacements	
	 way back An is and from the origin? A) Ali has run a greater distance, but his displacement is less than Omar's 	 B) Omar has run a greater distance and his displacement is greater than Ali's. 	 C) Ali has run a greater distance and his displacement is greater than Omar's. 	 D) Omar has run a greater distance, but his displacement is less than Ali's 	 E) Omar has run a shorter distance, and his displacement is less than Ali's 	

University * ______name_____

13	If $\mathbf{A}+\mathbf{B} = 0$, the corresponding components of the two vectors \mathbf{A} and \mathbf{B} must be:				
	A) equal	B) negative	C) of opposite sign	D) positive	E) none of those
14	W/h; -h - 6 4h - 6 - 11;		1		
14	which of the following	ng can't possibly be acc	celerating?		
	A) an object moving with a constant speed	B) an object moving along a circle	C) an object moving along a curve	D) an object moving with a constant velocity	E) none of those
15	Two balls, projected at different launch angles with the same initial speed y				
	at different times so they don't collide, they have trajectories A and B, as				
	shown in the figure. Which statement is correct:				A x
	A) Ball A has a greater acceleration than ball B.	B) Ball B is in the air for a longer time than ball A.	C) Ball A is in the air for a longer time than ball B.	D) Ball B has a greater acceleration than ball A.	E) None of those

The End