Math 316 First Midterm Exam 1445, 1st semester

Q1 Prove or disprove each of the following statements:

- (a) If a set $\{x_1, x_2, ..., x_n\}$ is orthogonal in an inner product space X, then it is linearly independent.
- (b) If $f(x) = \ln x$ and $\rho(x) = \frac{1}{x}$, then $f \in \mathcal{L}^{2}_{\rho}(0, 1)$.

Q2 Consider the sequence of functions

$$f_n\left(x\right) = x^n, \quad x \in [0, 1]$$

- (a) Find the limit f(x) of $f_n(x)$ as $n \to \infty$.
- (b) Does $f_n(x)$ converge to f(x) uniformly? Justify your answer.
- (c) Does $f_n(x)$ converge to f(x) in $\mathcal{L}^2([0,1])$? Justify your answer.

Q3 Consider the eigenvalue problem

$$Lu + \lambda u = 0, \quad x \in [a, b],$$
(1)
$$u(a) = 0, \quad u(b) = 0$$

- (a) Prove that if L is a self-adjoint operator, then $\lambda \in \mathbb{R}$.
- (b) Show that if $L = (1 + 3x^2) \frac{d^2}{dx^2} + 6x \frac{d}{dx}$ in problem (1), then L is a self-adjoint operator.
- Q4 Consider the eigenvalue problem

$$u'' + 2u' + \lambda u = 0, \quad x \in [0, 1],$$

$$u(0) = 0, \quad u(1) = 0$$
 (2)

- (a) Find the eigenvalues and eigenfunctions of problem (2).
- (b) Show that L is not a self-adjoint operator.
- (c) Transform L into a self-adjoint operator.
- (d) Write the orthogonality relation between the eigenfunctions of problem (2).

Good Luck Eyman Alahmadi