Chapter 2: Gasses

1. The atmospheric pressure of 768.2 mm Hg . Expressed in kilopascals (kPa) what would the value be the pressure?

$$
(1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{torr}=760 \mathrm{~mm} \mathrm{Hg})
$$

a. 778.4 kPa
b. 102.4 kPa
c. 100.3 kPa
d. 91.62 kPa
e. 1024 kPa

101.325 kPa	$=$	760 mm Hg
$?$		$\mathbf{7 6 8 . 2} \mathbf{~ m m ~ H g}$

2. A sample of a gas occupied a volume of 6.414 liters when the pressure was 850 torr and the temperature was $27.2{ }^{\circ} \mathrm{C}$. The pressure was readjusted to 4423 torr. What was the new volume?
a. 0.837 L
b. 0.937 L
c. 1.23 L
d. 1.53 L
e. 3.34 L
$\mathrm{V}_{1}=6.414 \mathrm{~L} \quad P_{1}=850$ torr
$V_{2}=$? L $\quad P_{2}=4423$ torr

$$
\mathbf{P}_{1} . \mathbf{V}_{1}=\mathbf{P}_{2 .} \mathbf{V}_{2}
$$

$$
(850 \text { torr })(6.414 \mathrm{~L})=\left(\mathrm{V}_{2}\right)(4423 \text { torr })
$$

$$
\mathrm{V}_{2}=1.23 \mathrm{~L}
$$

3. A sample of a gas 1.40 liters when the pressure was 762 torr and the temperature was $26.9{ }^{\circ} \mathrm{C}$. The volume of the system was readjusted to 0.150 liters. What was the new pressure?
a. 13.4 atm
b. 883 atm
c. 918 atm
d. 1020 atm
e. 9.36 atm

$$
\begin{gathered}
\mathbf{P}_{1 .} \mathbf{V}_{1}=\mathbf{P}_{2} . \mathrm{V}_{2} \\
(762 \text { torr })(1.40 \mathrm{~L})=(\mathbf{x})(0.150 \mathrm{~L}) \\
\mathbf{P}=7112 \text { torr } \\
\mathbf{P}=7112 / 760=9.36 \mathrm{~atm}
\end{gathered}
$$

4. A sample of a gas occupied a volume of 1.40 liters when the pressure was 768 torr and the temperature was $26.9{ }^{\circ} \mathrm{C}$. The volume of the system was readjusted to 2.16 liters. What was the temperature in the system at this point?
a. $41.5^{\circ} \mathrm{C}$
b. $41.9{ }^{\circ} \mathrm{C}$
c. $189.8^{\circ} \mathrm{C}$
d. $194.7^{\circ} \mathrm{C}$
e. $288.6^{\circ} \mathrm{C}$

$$
\begin{gathered}
\frac{V_{1}}{V_{2}}=\frac{T_{1}}{T_{2}} \\
\mathrm{~T}_{2}=\mathrm{V}_{2} \mathrm{~T}_{1} / \mathrm{V}_{1} \\
2.16 \times(\mathbf{2 6 . 9}+\mathbf{2 7 3 . 1 5}) / \mathbf{1 . 4 0}=\mathbf{4 6 2 . 9} \mathrm{K} \\
462.9-\mathbf{2 7 3 . 1 5}=\mathbf{1 8 9 . 8}{ }^{\circ} \mathrm{C}
\end{gathered}
$$

5. STP for gases has the values;
a. temperature: 0.00 K ; pressure: 1.000 standard atmosphere
b. temperature: $0.00{ }^{\circ} \mathrm{C}$; pressure: $\mathbf{1 . 0 0 0}$ standard atmosphere
c. temperature: 273.15 K ; pressure: 1.000 Pascal
d. temperature: 298.15 K ; pressure: 1.000 standard atmosphere
e. temperature: 298.15 K; pressure: 1.000 Pascal
6. The volume of gas was 1.524 liters at $28.40{ }^{\circ} \mathrm{C}$, and 637.6 torr. What volume would this gas sample occupy at STP?
a. 1.069 L
b. 1.158 L
c. 1.412 L
d. 1.645 L
e. 2.006 L

$$
\begin{gathered}
\text { STP : } \mathbf{P}_{2}=760 \text { torr and } T_{2}=273 \mathrm{~K} \\
\mathbf{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2} \\
\mathbf{V}_{2}=\left(\mathbf{P}_{1} \mathbf{V}_{1} \mathrm{~T}_{2}\right) /\left(\mathrm{P}_{2} \mathrm{~T}_{1}\right) \\
\mathbf{V}_{\mathbf{2}}=\mathbf{6 3 7 . 6} \times 1.524 \times 273 / 760 \times 301.55 \\
\mathbf{V}_{2}=1.158 \mathrm{~L}
\end{gathered}
$$

7. How many liters of pure oxygen gas, measured at STP, are required for the complete combustion of $11.2 \mathrm{~L}^{\text {of }} \mathrm{CH}_{4}$ gas, also measured at STP?
$1 \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{~L} \quad 2 \mathrm{~L}$
11.2 L ? L

$$
V=11.2 \times 2 / 1=22.4 L
$$

a. 11.2 L
b. 16.8 L
c. 22.4 L
d. 32.0 L
e. 33.6 L
8. A chemical reaction is shown: $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$. How many liters of pure oxygen gas, measured at STP, are required for the complete reaction with 8.82 L of $\mathrm{NO}(g)$, also measured at STP?

$$
\begin{array}{ll}
2 \mathrm{NO}(g) & +1 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g) \\
2 \mathrm{~L} & 1 \mathrm{~L} \\
8.82 \mathrm{~L} & ? \mathrm{~L} \\
& \mathrm{~V}=8.82 / 2=4.41 \mathrm{~L}
\end{array}
$$

a. 4.41 L
b. 8.82 L
c. 11.2 L
d. 17.6 L
e. 22.4 L
9. A gas sample weighing 3.78 grams occupies a volume of 2.28 L at STP. What is the molecular mass of the sample?

$$
\begin{gathered}
\text { P.V }=\mathrm{n} . \mathrm{R} . \mathrm{T} \\
\text { PV }=\mathrm{mRT} / \mathbf{M M} \\
\mathbf{M M}=\mathrm{mRT} / \mathrm{PV}
\end{gathered}
$$

$$
\mathrm{MM}=\left[(3.78 \mathrm{~g})\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1}\right)(273)\right] /[1 \mathrm{~atm})(2.28 \mathrm{~L})
$$

$$
\mathrm{MM}=30.6 \mathrm{~g} \mathrm{~mol}^{-1}
$$

a. $8.54 \mathrm{~g} \mathrm{~mol}^{-1}$
b. $13.5 \mathrm{~g} \mathrm{~mol}^{-1}$
c. $37.1 \mathrm{~g} \mathrm{~mol}^{-1}$
d. $51.1 \mathrm{~g} \mathrm{~mol}^{-1}$
e. $193 \mathrm{~g} \mathrm{~mol}^{-1}$
10. Two moles of CO_{2} gas at $35^{\circ} \mathrm{C}$ are heated to $250^{\circ} \mathrm{C}$, The density of the gas in the gas will:
P.MM = d.R.T

The Density is inversely proportional to Temperature
T increases, Density decreases
a. increase.
b. decrease.
c. remain the same.
d. There is not enough information given to correctly answer this question.
11. What volume would 11.2 g of a gaseous compound occupy at STP if its molecular weight is $44.0 \mathrm{~g} / \mathrm{mole}$?

$$
\begin{gathered}
\text { P.V }=\mathrm{n} . \mathrm{R} . \mathrm{T} \\
\mathrm{P} \text { V }=\mathrm{m} \mathrm{R} \mathrm{~T} / \mathrm{MM} \\
\mathrm{~V}=\mathrm{m} \mathrm{R} \mathrm{~T} / \mathrm{P} \mathbf{M M} \\
\mathrm{~V}=\left[(11.2 \mathrm{~g})\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(273)\right] /[1 \mathrm{~atm})(44.0 \mathrm{~g} / \mathrm{mole}) \\
\mathrm{V}=5.71 \mathrm{~L}
\end{gathered}
$$

a. 5.71 liters
b. 11.0 liters
c. 11.2 liters
d. 22.4 liters
e. 44.0 liters
12. A gas sample occupies a volume of 1.66 L when the temperature is $150.0{ }^{\circ} \mathrm{C}$ and the pressure is 842 torr. How many molecules are in the sample?

$$
\begin{gathered}
\text { P.V }=\mathrm{n} \cdot \mathrm{R} . \mathrm{T} \\
\mathrm{n}=\mathrm{p} \cdot \mathrm{~V} / \mathrm{RT} \\
\mathrm{n}=(842 / 760) \mathrm{atm} \times 1.66 \mathrm{~L} / 0.08206 \mathrm{~L} \mathbf{~ a t m ~} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(150+273.15 \mathrm{~K}) \\
\mathrm{n}=0.053 \mathrm{~mol} \\
\mathrm{~N}=\mathrm{n} \times \mathrm{N}_{\mathrm{A}}=0.053 \times 6.02 \times 10^{23}=3.19 \times 10^{22} \text { molecules }
\end{gathered}
$$

a. 1.52×10^{22}
b. 2.60×10^{22}
c. 3.19×10^{22}
d. 9.01×10^{22}
e. 9.42×10^{21}
13. A gas container has a volume of 6.504 L . When filled with $\mathrm{C}_{3} \mathrm{H}_{8}$, at $28.3{ }^{\circ} \mathrm{C}$, the pressure is 486.3 torr. How much should the gas sample weigh?

$$
\begin{gathered}
\text { P.V }=\text { n.R.T } \\
\text { P V }=\mathrm{m} R \mathrm{~T} / \mathrm{MM} \\
\mathrm{~m}=\mathrm{P} . V . \mathrm{MM} / \mathrm{R} \mathrm{~T} \\
\mathrm{~m}=(\mathbf{4 8 6 . 3 / 7 6 0}) \mathrm{atm} \times 6.504 \mathrm{~L} \times(44 \mathrm{~g} / \mathrm{mol}) / 0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol} \\
\mathrm{~m}=7.41 \mathrm{~g}
\end{gathered}
$$

a. 4.67 g
b. 7.41 g
c. 7.52 g
d. 18.1 g
e. 263. G
14. A container contains 0.2 moles of O_{2} gas and 0.3 moles of N_{2} gas. If the total pressure is 0.75 atm what is the partial pressure of O_{2} ?

$$
\begin{gathered}
\mathbf{P}_{\mathrm{i}}=\mathbf{X}_{\mathrm{i}} \cdot \mathbf{P}_{\mathrm{t}} \\
\mathbf{P}_{\mathrm{i}}=\left(\mathbf{n}_{\mathrm{i}} / \mathbf{n}_{\mathrm{T}}\right) . \mathbf{P}_{\mathrm{t}} \\
\mathbf{P}_{\mathrm{i}}=(0.2 / 0.5) 0.75 \\
\mathbf{P}_{\mathrm{i}}=0.30 \mathrm{~atm}
\end{gathered}
$$

a. 0.20 atm
b. 0.30 atm
c. 0.50 atm
d. 0.75 atm
e. 0.45 atm
15. A container contains partial pressures of $0.80 \mathrm{~atm} \mathrm{CO}_{2}$ gas and $0.35 \mathrm{~atm} \mathrm{~N}_{2}$ gas. What is the mole fraction of N_{2} in the glass container?

$$
\begin{gathered}
\mathbf{X}_{\mathbf{i}}=\mathbf{P}_{\mathrm{i}} / \mathbf{P}_{\mathrm{t}} \\
\mathbf{X}_{\mathrm{i}}=0.35 /(0.8+0.35) \\
\mathbf{X}_{\mathbf{i}}=0.30
\end{gathered}
$$

a. 0.35
b. 1.15
c. 0.70
d. 0.80
e. 0.30
16. A gaseous substance diffuses twice as rapidly as SO_{2} gas. The gas could be
a. CO
b. He
c. H_{2}
d. CH_{4}
e. O_{2}

$$
\begin{aligned}
& \frac{r_{1}}{r_{2}}=\sqrt{\frac{M M_{2}}{M M_{1}}} \\
& 2=\sqrt{\frac{32+32}{M M_{1}}} \\
& 4=\frac{64}{M M_{1}} \\
& M M_{1}=\frac{64}{4}=16 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

17. According to the kinetic theory of gases, the average kinetic energy of the gas particles in a gas sample is directly proportional to the;
a. pressure.
b. volume.
c. absolute temperature.
d. molar mass.
e. number of moles of gas.
18. The van der Waals equation of state for a real gas is: $\left[P+\frac{n^{2} a}{V^{2}}\right]\left[\frac{V-n b}{}\right]=n R T$

At what pressure will 1.00 mole of CH_{4} be in a 10.0 L container at 298 K assuming CH_{4} is a real gas.
(van der Waals constants for CH_{4} are $a=2.253 \mathrm{~L}^{2}$ atm mol${ }^{-2}, b=0.04278 \mathrm{~L} \mathrm{~mol}^{-1}$)
a. 2.43 atm
b. 2.28 atm
c. 2.51 atm
d. 24.5 atm
e. 0.440 atm
19. A real gas behaves most nearly like an ideal gas under conditions of
a. low temperature and high pressure.
b. low temperature and low pressure.
c. high temperature and low pressure.
d. high temperature and high pressure.
e. Actually it will behave like an ideal gas regardless of the temperature or the pressure as long as it remains in the gaseous state.

