Chapter 5: Properties of Solutions

1. Wax is a solid mixture of hydrocarbon compounds consisting of molecules with long chains of carbon atoms. Which solvent would you expect to be most capable of dissolving wax?

Non-polar solute will dissolve in non polar solvet
a. $\mathrm{H}-\mathrm{O}-\mathrm{H}$
b. $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{H}$
c. $\mathrm{CF}_{3}-\mathrm{O}-\mathrm{H}$
d. $\mathrm{H}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{H}$
*
e. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
2. Which of the following will always cause an increase in the solubility of a gas in a solvent in which the gas does not react with the solvent to form a new substance?
a. increasing the temperature of the solvent and simultaneously decreasing the pressure of the gas in the space above the solvent.

* b. decreasing the temperature of the solvent and simultaneously increasing the pressure of the gas in the space above the solvent.
c. increasing the temperature of the solvent and simultaneously increasing the pressure of the gas in the space above the solvent.
d. decreasing the temperature of the solvent and simultaneously decreasing the pressure of the gas in the space above the solvent.
e. increasing the temperature of the solvent while maintaining the pressure of the gas in the space above the solvent at a set value.

3. During osmosis:

* a. pure solvent passes through a membrane but solutes do not.
b. pure solute passes through a membrane but solvent does not.
c. pure solvent moves in one direction through the membrane while the solution moves through the membrane in the other direction.
d. pure solvent moves in one direction through the membrane while the solute moves through the membrane in the other direction.
e. pure solute moves in one direction through the membrane while the solution moves through the membrane in the other direction.

4. The solubility of O_{2} in water is approximately $0.00380 \mathrm{~g} \mathrm{~L}^{-1}$ when the temperature is 25.0 ${ }^{\circ} \mathrm{C}$ and the partial pressure of gaseous oxygen is 760 torr. What will the solubility of oxygen be if the oxygen pressure is adjusted to 1000 torr?

		$\mathrm{C}_{1}=0.00380 \mathrm{~g} \mathrm{~L}^{-1}, \mathrm{P}_{1}=760$ torr	
a.	$0.00289 \mathrm{~g} \mathrm{~L}^{-1}$	$\mathrm{C}_{2}=? \mathrm{~g} \mathrm{~L}^{-1}$,	$\mathrm{P}_{2}=1000$ torr
b.	$0.00500 \mathrm{~g} \mathrm{~L}^{-1}$	$\frac{C_{1}}{C_{2}}=\frac{P_{1}}{P_{2}}$	$C_{2}=\frac{P_{2} C_{1}}{P_{2}}=\frac{1000 \times 0.00380}{760}=0.00500 \mathrm{~g} \mathrm{~L}^{-1}$
c.	$1.49 \mathrm{~g} \mathrm{~L}^{-1}$		
d.	$2.89 \times 10^{3} \mathrm{~g} \mathrm{~L}^{-1}$		
e.	$3.46 \times 10^{3} \mathrm{~g} \mathrm{~L}^{-1}$		

5. When a solute such as sugar is dissolved in a solvent like water, one of the observed effects is:

* a. a decrease in the vapor pressure of the solvent.
b. an increase in the vapor pressure of the solute.
c. an increase in the freezing point of the liquid.
d. a decrease in the boiling point of the liquid.

6. At $23.0{ }^{\circ} \mathrm{C}$, the vapor pressure of acetonitrile, $\mathrm{CH}_{3} \mathrm{CN}$, is 81.0 torr while that of acetone, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, is 184.5 torr. What is the vapor pressure of a solution which contains 0.550 moles of acetonitrile and 0.350 moles of acetone? (Assume the mixture behaves as an ideal solution.)

a. $\quad 109$ torr b. 121 torr c. $\quad 130$ torr d. 144 torr e. 239 torr	$\begin{aligned} & \text { Acetonitrile }=\mathrm{A}, \text { acetone }=\mathrm{B} \\ & \mathrm{P}_{\mathrm{A}}^{\mathrm{o}}=81 \text { torr, } \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}=184.5 \text { torr, } \\ & \mathrm{n}_{\mathrm{A}}=0.550 \text { mole }^{0}, \mathrm{n}_{\mathrm{B}}=0.350 \text { mole } \\ & \mathrm{P}_{\mathrm{t}}=?=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}} \\ & \quad \mathrm{P}_{\mathrm{t}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{\mathrm{o}}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}=\frac{n_{A}}{n_{A}+n_{B}} P_{A}^{o}+\frac{n_{B}}{n_{A}+n_{B}} P_{B}^{o} \\ & \quad\left(\frac{0.550}{0.55+0.35} \times 81\right)+\left(\frac{0.35}{0.55+0.35} x 184.5\right)=121 \text { torr } \end{aligned}$

7. A very dilute solution contains 116 mg of fructose (molar mass $=180.16 \mathrm{~g} \mathrm{~mol}^{-1}$) in 1.000 liter of solution. It is placed in an osmotic membrane bladder, which is then suspended in pure water. What osmotic pressure would develop across the membrane if the temperature is $26.0{ }^{\circ} \mathrm{C}$?

a. $\quad 3.36$ torr b. $\quad 12.0$ torr c. $\quad 151$ torr d. 475 torr e. 1217 torr	$\begin{aligned} & \mathrm{m}=116 \mathrm{mg}=0.116 \mathrm{~g} \\ & \mathrm{MM}=180.16 \mathrm{~g} \mathrm{~mol}^{-1} \\ & \mathrm{~V}=1 \mathrm{~L} \\ & \mathrm{~T}=26^{\circ} \mathrm{C}+273=299 \mathrm{~K} \quad \\ & \qquad \begin{array}{l} \frac{n}{V} R T=\frac{m \cdot R \cdot T}{M M \cdot V}=\frac{0.116 x 0.082 \times 299}{180.16 \times 1}=0.0158 \mathrm{~atm} \times 760=12.0 \mathrm{tor} r \end{array} \end{aligned}$

8. At $28.0{ }^{\circ} \mathrm{C}$, the vapor pressure of n-propyl mercaptan, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}$, is 175 torr, while that of acetonitrile, $\mathrm{CH}_{3} \mathrm{CN}$, is 102 torr. What is the vapor pressure, at 28.0 C , of a solution made by mixing 100.0 g of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}$ and $100.0 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CN}$, if Raoult's Law is obeyed?

a. $\quad 35.7$ torr b. 128 torr c. $\quad 139$ torr d. 149 torr e. 277 torr	$\begin{aligned} & \text { Acetonitrile }=\mathrm{A}(\mathrm{MM}=41 \mathrm{~g} / \mathrm{mol}), \\ & n \text {-propyl mercaptan }=\mathrm{B}(\mathrm{MM}=76 \mathrm{~g} / \mathrm{mol}) \\ & \text { both are volatile } \end{aligned} \begin{gathered} \mathrm{P}_{\mathrm{t}}=?=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}} \\ \mathrm{P}_{\mathrm{A}}^{\mathrm{o}}=102 \text { torr, } \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}=175 \text { torr, } \\ \mathrm{m}_{\mathrm{A}}=100 \mathrm{~g}, \mathrm{~m}_{\mathrm{B}}=100 \mathrm{~g} \mathrm{P}_{\mathrm{A}}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}= \\ \frac{n_{A}}{n_{A}+n_{B}} P_{A}^{o}+\frac{n_{B}}{n_{A}+n_{B}} P_{B}^{o}=\frac{\left(\frac{m}{M M}\right)_{A}}{\left(\frac{m}{M M}\right)_{A}+\left(\frac{m}{M M}\right)_{B}} P_{A}^{o}+\frac{\left(\frac{m}{M M}\right)_{B}}{\left(\frac{m}{M M}\right)_{A}+\left(\frac{m}{M M}\right)_{B}} P_{B}^{o} \\ \qquad\left(\frac{100}{\frac{100}{41}+\frac{100}{76}} \times 102\right)+\left(\frac{\frac{100}{76}}{\frac{100}{41}+\frac{100}{76}} \times 175\right)=128 \text { torr } \end{gathered}$

9. A molecular solute with a molar mass of $50.0 \mathrm{~g} \mathrm{~mol}^{-1}$ is dissolved in 500 g of water and the resulting solution has a boiling point of $101.53^{\circ} \mathrm{C}$. How many grams of solute were in the solution? $\mathrm{K}_{\mathrm{b}}=0.51^{\circ} \mathrm{C} \mathrm{m} \mathrm{m}^{-1}$

$$
\begin{aligned}
& \text { a. 30. grams } \\
& \mathrm{MM}=50 \mathrm{~g} / \mathrm{mol}^{\left(\mathrm{m}_{\text {(solvent) }}=500 \mathrm{~g}, \mathrm{~T}_{\mathrm{b}}=101.53^{\circ} \mathrm{C}, \mathrm{~m}=? \mathrm{~g}, \mathrm{~K}_{\mathrm{b}}=0.51{ }^{\circ} \mathrm{C} \mathrm{~m}\right.}{ }^{-1} \\
& \text { b. 75. grams } \\
& \text { c. } 100 \text { grams } \\
& \text { d. } 125 \text { grams } \\
& \text { e. } 150 \text { grams } \\
& \Delta T_{b}=K_{b} \frac{n_{\text {solute }}}{m_{\text {solver }(k g)}}=\frac{\left(\frac{m}{M M}\right)_{\text {solute }}}{m_{\text {solvent }(k g)}} K_{b}=\frac{m_{\text {solute }}}{M M_{\text {solute }} \cdot m_{\text {solvent }(k g)}} K_{b}= \\
& \frac{m}{50 \times 0.5} \times 0.51=101.53-100=1.53 \\
& m=\frac{1.53 \times 50 \times 0.5}{0.51}=75 \mathrm{~g}
\end{aligned}
$$

10. A solution contains 221 g of glycerol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right)$ in 600 grams of water. The K_{f} is $1.86{ }^{\circ} \mathrm{C}$ m^{-1} and K_{b} is $0.51{ }^{\circ} \mathrm{C} \mathrm{m}^{-1}$. What should the boiling point of the solution be?

a. $\quad 100.02{ }^{\circ} \mathrm{C}$ b. $\quad 100.73{ }^{\circ} \mathrm{C}$ c. $\quad 101.65^{\circ} \mathrm{C}$ d. $\quad 102.04{ }^{\circ} \mathrm{C}$ e. $\quad 103.62{ }^{\circ} \mathrm{C}$	

11. A solution, which was made by dissolving 62.07 g of a nonelectrolyte in 500 g of water, exhibits a freezing point of $-1.86{ }^{\circ} \mathrm{C}$. What is the molecular weight of this nonelectrolyte compound? For water, K_{f} is $1.86{ }^{\circ} \mathrm{C} \mathrm{m}^{-1}$ and K_{b} is $0.51{ }^{\circ} \mathrm{C} m^{-1}$.

a. $\quad 57.7 \mathrm{~g} \mathrm{~mol}^{-1}$ b. $\quad 62.07 \mathrm{~g} \mathrm{~mol}^{-1}$ c. $\quad 115 \mathrm{~g} \mathrm{~mol}^{-1}$ d. $\quad 124 \mathrm{~g} \mathrm{~mol}^{-1}$ e. $\quad 231 \mathrm{~g} \mathrm{~mol}^{-1}$	$\begin{aligned} & \mathrm{MM}=? \mathrm{~g} / \mathrm{mol}, \mathrm{~m}_{\text {(solvent) }}=500 \mathrm{~g}, \mathrm{~m}_{\text {solute }}=62.07 \mathrm{~g}, \mathrm{~K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} \mathrm{~m} \\ & \mathrm{~T}_{\mathrm{f}}=-1.86^{\circ} \mathrm{C}, \mathrm{~K}_{\mathrm{b}}=0.51 \mathrm{C} \mathrm{~m}^{-1}, \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}^{\mathrm{o}}-\mathrm{T}_{\mathrm{f}}=0-(-1.86)=1.86^{\circ} \mathrm{C} \\ & \Delta T_{f}=K_{f} \frac{n_{\text {solute }}}{m_{\text {solvet }(k)}}=\frac{\left(\frac{m}{M M}\right)_{\text {solute }}}{m_{\text {solut }(k g)}} K_{f}=\frac{m_{\text {solute }}}{M M_{\text {solute }} \cdot m_{\text {solvent }(k g)}} K_{f}= \\ & M M=\frac{m_{\text {solute }}}{m_{\text {solvent(kg) }} \Delta \Delta T_{f}} K_{f}=\frac{62.07 x 1.86}{0.5 x 1.86} \\ & =124 \mathrm{~g} / \mathrm{mol} \end{aligned}$

12. How many moles of the nonelectrolyte, propylene glycol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ should be dissolved in 800.0 g of water to prepare a solution whose freezing point is $-3.72{ }^{\circ} \mathrm{C}$? For water, K_{f} is 1.86 ${ }^{\circ} \mathrm{C} m^{-1}$ and K_{b} is $0.51{ }^{\circ} \mathrm{C} \mathrm{m}^{-1}$.

a. $\quad 1.60$ moles b. $\quad 2.00$ moles c. $\quad 2.50$ moles d. 2.98 moles e. $\quad 4.65$ moles	$\begin{aligned} & \mathrm{MM}=92 \mathrm{~g} / \mathrm{mol}, \mathrm{~m}_{\text {(solvent) }}=800 \mathrm{~g}, \mathrm{n}_{\text {solute }}=? \mathrm{~mol}, \mathrm{~K}_{\mathrm{f}}=1.86 \mathrm{C} \mathrm{~m}^{-1}, \mathrm{~K}_{\mathrm{b}}=0.51 \mathrm{C} \mathrm{~m} \\ & \mathrm{~T}_{\mathrm{f}}=-3.72{ }^{\circ} \mathrm{C}, \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}^{\mathrm{o}}-\mathrm{T}_{\mathrm{f}}=0-(-3.72)=3.72{ }^{\circ} \mathrm{C} \\ & \Delta T_{f}=K_{f} \frac{n_{\text {solute }}}{m_{\text {solvet }(k g)}} \\ & n_{\text {solute }}=\frac{m_{\text {solvent }}(\mathrm{kg}) x \Delta T_{f}}{K_{f}}=\frac{0.8 X 3.72}{1.86}=1.60^{\circ} \mathrm{C} \end{aligned}$

13. How many grams of glycerol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right.$, a nonelectrolyte) should be dissolved in 600 g of water to prepare a solution whose freezing point is $-4.65{ }^{\circ} \mathrm{C}$? For water, K_{f} is $1.86{ }^{\circ} \mathrm{C} \mathrm{m}{ }^{-1}$ and K_{b} is $0.51{ }^{\circ} \mathrm{C} \mathrm{m}^{-1}$.

a.	22.1 grams	$\mathrm{MM}=92 \mathrm{~g} / \mathrm{mol}^{\circ}, \mathrm{m}_{\text {solute }}=? \mathrm{~g}, \mathrm{~m}_{\text {solvent }}=600 \mathrm{~g} \mathrm{~K} \mathrm{~K}_{\mathrm{f}}=1.86 \mathrm{Cm}^{\circ}, \mathrm{K}_{\mathrm{b}}$
b.	93.6 grams	$=0.51{ }^{\circ} \mathrm{C} \mathrm{m} m^{-1}, \mathrm{~T}_{\mathrm{f}}=-4.65{ }^{\circ} \mathrm{C}$
c.	138 grams	$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}^{\circ}{ }_{\mathrm{f}}-\mathrm{T}_{\mathrm{f}}=0-(-4.65)=4.65^{\circ} \mathrm{C}$
d.	384 grams	
e.	478 grams	

	$\Delta T_{f}=K_{f} \frac{n_{\text {solute }}}{m_{\text {solvet }(k g)}}=\frac{\left(\frac{m}{M M}\right)_{\text {solute }}}{m_{\text {solut }(k g)}} K_{f}=\frac{m_{\text {solute }}}{M M_{\text {solute }} \cdot m_{\text {solvent }(k g)}} K_{f}=$
$\frac{m}{92 x 0.6} \times 1.86=4.65$	
$m=\frac{4.65 x 92 x 0.6}{1.86}=138 \mathrm{~g}$	

14. At $28.0{ }^{\circ} \mathrm{C}$, the vapor pressure of n-propyl mercaptan, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}$, is 175 torr, while that of acetonitrile, $\mathrm{CH}_{3} \mathrm{CN}$, is 102 torr. What is the vapor pressure, at $28.0^{\circ} \mathrm{C}$, of a solution made by mixing 80.0 g of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}$ and $120.0 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CN}$, if Raoult's Law is obeyed?
a. 121 torr
b. 131 torr
c. 139 torr
d. 146 torr
e. 156 torr

Acetonitrile $=\mathrm{A}(\mathrm{MM}=41 \mathrm{~g} / \mathrm{mol}), n$-propyl mercaptan $=\mathrm{B}(\mathrm{MM}=76 \mathrm{~g} / \mathrm{mol})$ both are volatile
$\mathrm{P}_{\mathrm{A}}^{\mathrm{o}}=102$ torr, $\mathrm{P}_{\mathrm{B}}^{\mathrm{o}}=175$ torr,
$\mathrm{m}_{\mathrm{A}}=120 \mathrm{~g}, \mathrm{~m}_{\mathrm{B}}=80 \mathrm{~g}$

$$
\begin{gathered}
\mathrm{P}_{\mathrm{t}}=?=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}} \\
\mathrm{P}_{\mathrm{t}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{\mathrm{o}}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}= \\
\frac{n_{A}}{n_{A}+n_{B}} P_{A}^{o}+\frac{n_{B}}{n_{A}+n_{B}} P_{B}^{o}=\frac{\left(\frac{m}{M M}\right)_{A}}{\left(\frac{m}{M M}\right)_{A}+\left(\frac{m}{M M}\right)_{B}} P_{A}^{o}+\frac{\left(\frac{m}{M M}\right)_{B}}{\left(\frac{m}{M M}\right)_{A}+\left(\frac{m}{M M}\right)_{B}} P_{B}^{o}
\end{gathered}
$$

$$
\left(\frac{\frac{120}{41}}{\frac{120}{41}+\frac{80}{76}} x 102\right)+\left(\frac{\frac{80}{76}}{\frac{120}{41}+\frac{80}{76}} \times 175\right)=46.3+75=121 \text { torr }
$$

15. What is the expected freezing point of a solution that contains 25.0 g of fructose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, in 250.0 g of $\mathrm{H}_{2} \mathrm{O}$? For water, $K_{f}=1.86^{\circ} \mathrm{C} \mathrm{m}^{-1}$.

$\begin{aligned} & \text { a. }-0.10{ }^{\circ} \mathrm{C} \\ & \text { b. }+0.10{ }^{\circ} \mathrm{C} \\ & \text { c. }-0.186^{\circ} \mathrm{C} \\ & \text { d. }+0.186^{\circ} \mathrm{C} \\ & \text { e. }-1.03{ }^{\circ} \mathrm{C} \end{aligned}$	

16. Pure cyclohexane, $\mathrm{C}_{6} \mathrm{H}_{12}$, has a freezing point of $6.53{ }^{\circ} \mathrm{C}$. Its freezing point depression constant is: $\mathrm{K}_{\mathrm{f}}=20.0{ }^{\circ} \mathrm{C} \mathrm{m}{ }^{-1}$. A solution was made by taking 18.55 g of an unknown nonelectrolyte and dissolving it in 150.0 g of cyclohexane. The measured freezing point of the solution was $-4.28^{\circ} \mathrm{C}$. Calculate the molecular weight of the unknown substance.

a. $61.8 \mathrm{~g} \mathrm{~mol}^{-1}$ b. $66.8 \mathrm{~g} \mathrm{~mol}^{-1}$ c. $229 \mathrm{~g} \mathrm{~mol}^{-1}$ d. $578 \mathrm{~g} \mathrm{~mol}^{-1}$ e. $1099 \mathrm{~g} \mathrm{~mol}^{-1}$	$\begin{aligned} & \mathrm{MM}=? \mathrm{~g} / \mathrm{mol}^{\circ}, \mathrm{m}_{\text {(solvent) }}=150 \mathrm{~g}, \mathrm{~m}_{\text {solute }}=18.55 \mathrm{~g}, \mathrm{~K}_{\mathrm{f}}=20.0^{\circ} \mathrm{C} \mathrm{~m}^{-1} \mathrm{C} \mathrm{~m} \\ & \mathrm{~T}_{\mathrm{f}}^{0}=6.53{ }^{\circ} \mathrm{C}, \mathrm{~T}_{\mathrm{f}}=-4.28^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{T}^{\mathrm{o}} \mathrm{f}-\mathrm{T}_{\mathrm{f}}=6.53-(-4.28)=10.81^{\circ} \mathrm{C} \\ & \Delta T_{f}=K_{f} \frac{n_{\text {solute }}}{m_{\text {solvet }(\mathrm{kg})}}=\frac{\left(\frac{m}{M M}\right)_{\text {solute }}}{m_{\text {solut } k g)}} K_{f}=\frac{m_{\text {solute }}}{M M_{\text {solute }} \cdot m_{\text {solven(} k g)}} K_{f}= \\ & \frac{18.55}{M M x 0.150} \times 20=10.81^{0} \mathrm{C} \\ & \mathrm{MM}=(18.55 \times 20) /(0.15 \times 10.81)=228.8 \mathrm{~g} / \mathrm{mol} \end{aligned}$

17. Which property of a solution is not a colligative property?

* a. solubility of a solute
b. freezing point depression
c. boiling point elevation
d. osmotic pressure
e. vapor pressure lowering

18. Pure benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, has a freezing point of $5.45{ }^{\circ} \mathrm{C}$. Its freezing point depression constant is: $\mathrm{K}_{\mathrm{f}}=5.07{ }^{\circ} \mathrm{C} \mathrm{m} \mathrm{m}^{-1}$. A solution was made by taking 24.20 g of an unknown nonelectrolyte and dissolving it in 125.0 g of benzene. The measured freezing point of the solution was $-1.65{ }^{\circ} \mathrm{C}$. Calculate the molecular weight of the unknown substance.

a. $\quad 138 \mathrm{~g} \mathrm{~mol}^{-1}$ b. $\quad 145 \mathrm{~g} \mathrm{~mol}^{-1}$ c. $258 \mathrm{~g} \mathrm{~mol}^{-1}$ d. $\quad 272 \mathrm{~g} \mathrm{~mol}^{-1}$ e. $\quad 595 \mathrm{~g} \mathrm{~mol}^{-1}$	$\begin{aligned} & \mathrm{MM}=? \mathrm{~g} / \mathrm{mol}^{\circ}, \mathrm{m}_{\text {(solvent) }}=125.0 \mathrm{~g}, \mathrm{~m}_{\text {solute }}=24.20 \mathrm{~g}, \mathrm{~K}_{\mathrm{f}}=5.07 \mathrm{C} \mathrm{~m}^{-1}, \mathrm{~T}_{\mathrm{f}}^{\mathrm{o}}=5.45 \mathrm{C}, \\ & \mathrm{~T}_{\mathrm{f}}=-1.65 \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}^{\mathrm{o}}-\mathrm{T}_{\mathrm{f}}=5.45-(-1.65)=7.1^{\circ} \mathrm{C} \\ & \Delta T_{f}=K_{f} \frac{n_{\text {solute }}}{m_{\text {solvet }(k)}}=\frac{\left(\frac{m}{M M}\right)_{\text {solute }}}{m_{\text {solut }(k g)}} K_{f}=\frac{m_{\text {solute }}}{M M_{\text {solute }} \cdot m_{\text {solvent }(k g)}} K_{f}= \\ & M M=\frac{m_{\text {solute }}}{m_{\text {solvent }(k g)} \Delta \Delta T_{f}} K_{f}=\frac{24.2 x 5.07}{0.125 x 7.1} \\ & = \end{aligned}$

