Chapter 7 Acid-Base

- 1. The conjugate acid of HPO_4^{2-} is
 - a. H₂PO₄
 - b. H₃PO₄
 - c. PO_4^{3}
 - d. PO₄²-
 - * e. H₂PO₄

HPO_4^{2-} is base (accept H^+) $HPO_4^{2-} + H^+ \rightarrow H_2PO_4^{-}$

- 2. The conjugate base of H_2AsO_4 is
 - a. H₂AsO₄
 - b. H₃AsO₄
 - c. HAsO₄
 - * d. HAsO₄²
 - e. AsO_4^{3-}

H_2AsO_4 is acid (donate H^+) H_2AsO_4 $\rightarrow H^+ + HAsO_4^2$

- 3. In the reaction, $HClO_3 + N_2H_4 \rightleftharpoons ClO_3 + N_2H_5^+$, which species are an acidbase pair?

 Acid Base conj base conj acid
 - a. HClO₃, N₂H₄
 - b. N_2H_4 , ClO_3
 - c. HClO₃, N₂H₅⁺
 - * d. N_2H_4 , $N_2H_5^+$
 - e. ClO_3^- , $N_2H_5^+$
- 4. In the reaction, $HClO_3 + N_2H_4 \rightleftharpoons ClO_3 + N_2H_5^+$, which two species are both bases? Acid Base conj base conj acid
 - a. HClO₃, N₂H₄
 - b. HClO₃, ClO₃
 - c. HClO₃, N₂H₅⁺
 - d. N_2H_4 , $N_2H_5^+$
 - * e. ClO₃, N₂H₄
- 5. In the reaction, $HSO_4^- + HS^- \rightleftharpoons H_2S + SO_4^{2-}$, which two species are both acids?

 Acid Base conj base conj acid
 - a. HSO₄, HS
 - * b. HSO₄, H₂S
 - c. HS^- , H_2S
 - d. HS⁻, SO₄²-
 - e. H_2S , SO_4^{2}

6. For the system

$$NH_2OH + CH_3NH_3^+ \rightleftharpoons CH_3NH_2 + NH_3OH_2^+$$

Acid conj base conj acid

the position of the equilibrium lies to the left. Which is the strongest acid in the system?

- a. NH₂OH
- b. CH₃NH₃⁺
- c. CH₃NH₂
- * d. NH₃OH₂⁺
- e. NH₂OH and CH₃NH₃⁺ are equal in acid strength, and are the strongest acids in the system

Direction always from Strong \rightarrow weak

Equilibrium lies to the left, this mean weak on left or strong on wright

- 7. If the OH ion concentration in an aqueous solution at 25.0 °C is measured as 3.4 x 10^{-3} M, what is the pH?
 - a. 2.47
 - b. 7.22
 - c. 8.24
 - * d. 11.53
 - e. 16.47

$[OH] = 3.4 \times 10^{-3}$

$$[H^{+}]= 1 \times 10^{-14} / [OH^{-}] = 1 \times 10^{-14} / 3.4 \times 10^{-3} = 2.94 \times 10^{-12}$$

 $pH = -log [H^{+}] = -log 2.94 \times 10^{-12} = 11.53$

- 8. The pH of a solution is measured to be 10.4. What are the values of $[H_3O^+]$ and [OH⁻] for this solution?

 - a. $[H_3O^+] = 4.0 \times 10^{-11}$, $[OH^-] = 4.0 \times 10^3$ b. $[H_3O^+] = 2.5 \times 10^{-4}$, $[OH^-] = 4.0 \times 10^{-11}$ c. $[H_3O^+] = 1.0 \times 10^{-10}$, $[OH^-] = 3.6 \times 10^{-4}$ * d. $[H_3O^+] = 4.0 \times 10^{-11}$, $[OH^-] = 2.5 \times 10^{-4}$ e. $[H_3O^+] = 9.6 \times 10^{-2}$, $[OH^-] = 2.8 \times 10^{-1}$

pH = 10.4

$$[H^{+}] = 10^{-pH} = 10^{-10.4}$$
 (OR Shift log -10.4) = 4.0 x 10^{-11} [OH⁻] 1 x 10^{-14} / 4.0 x 10^{-11} = 2.5 x 10^{-4}

- 9. If the OH ion concentration in an aqueous solution at 25.0 °C is 6.6 x 10⁻⁴ M, what is the molarity of the H⁺ ion?
 - a. $1.5 \times 10^{-1} \text{ M}$
 - b. 1.5 x 10⁻⁴ M
 - c. $6.6 \times 10^{-10} \text{ M}$
 - * d. 1.5 x 10⁻¹¹ M

$$[OH^{-}] = 6.6 \times 10^{-4}$$

$[H^{+}] = 1 \times 10^{-14} / [OH^{-}] = 1 \times 10^{-14} / 6.6 \times 10^{-4} = 1.5 \times 10^{-11}$

- 10. If the H^+ ion concentration in an aqueous solution at 25.0 $^{\circ}$ C has a value of 0.100 M, what is the pOH of the solution?
 - a. 1.00
 - b. 7.00
 - c. 12.00
 - * d. 13.00
 - e. 11.40

$$[\mathbf{H}^{+}] = \mathbf{0.100}$$

$$[OH^{-}] = 1 \times 10^{-14} / [H^{+}] = 1 \times 10^{-14} / 0.100 = 1 \times 10^{-13}$$

$$pH = -log [H^+] = -log 1 \times 10^{-13} = 13$$

- 11. If the H⁺ ion concentration in an aqueous solution at 25.0 °C has a value of 0.100 M, then what is the pH of the solution?
 - a. -1.00
 - b. 0.100
 - * c. 1.00
 - d. 6.90
 - e. 13.00

$$[\mathbf{H}^{+}] = \mathbf{0.100}$$

$$pH = -log [H^+] = -log 0.1 = 1$$

- 12. If the H⁺ ion concentration in an aqueous solution at 25.0 $^{\circ}$ C is measured as 6.6 x 10^{-4} M, what is the pH?
 - a. 3.00
 - * b. 3.18
 - c. 6.60
 - d. 9.55
 - e. 10.82

$[H^+] = 6.6 \times 10^{-4}$

$$pH = -log [H^+] = -log 6.6 \times 10^{-4} = 3.18$$

- 13. Calculate the pH of a beer in which the hydrogen ion concentration is 3.9 x 10⁻⁵ M.
 - * <mark>a. 4.4</mark>
 - b. 3.9
 - c. 10.1
 - d. 5.0
 - e. 9.6

$$[H^+] = 3.9 \times 10^{-5}$$

pH = -log $[H^+]$ = - log 3.9 x 10^{-5} = 4.4

- 14. Calculate the pH of a 0.020 M solution of Ca(OH)₂ whose temperature is 25.0 °C.
 - a. 1.40
 - b. 0.040
 - c. 1.69
 - * d. 12.60
 - e. 12.30

$[Ca(OH)_2] = 0.020$

$$[OH^{-}] = 2 \times 0.020 = 0.04$$

$$[H^{+}] = 1 \times 10^{-14} / 0.04 = 2.5 \times 10^{-13}$$

$$pH = -log [H^+] = -log 2.5 \times 10^{-13} = 12.6$$

- 15. Given 0.01 M solutions of each of the following bases, which solution would have the highest pH?
 - a. Aniline ($C_6H_5NH_2$), $K_b = 3.9 \times 10^{-10}$

- pH = 8.3
- * b. Dimethylamine ((CH₃)₂NH), $K_b = 5.1 \times 10^{-4}$
- pH = 11.35

c. Hydrazine (N_2H_4) , $K_b = 1.3 \times 10^{-6}$

- pH = 10.05
- d. Methylamine (CH₃NH₂), $K_b = 4.4 \times 10^{-4}$
- pH= 11.32

e. Pyridine (C_5H_5N), $K_b = 1.7 \times 10^{-9}$

pH = 8.6

All weak bases

a)
$$[OH^{-}] = \sqrt{(Kb \times C_0)} = (Ka \times C_0)^{1/2} = \sqrt{(3.9 \times 10^{-10} \times 0.01)} = 1.97 \times 10^{-6}$$

pOH=-log 1.97 x 10⁻⁶ =5.7

$$pH = 14 - pOH = 8.3$$

Repeat for all b to e

Conclusion: you can find the highest K_b is highest $[OH^*]$ and the most basic solution which is the highest pH

- 16. The ionization constant, K_a , for macnic acid is 5.0 x 10^{-5} . What is the p K_a of this acid?
 - a. 2.00×10^4
 - * b. 4.30
 - c. 5.70
 - d. 1.75×10^{-1}
 - e. 10.70

$pK_a = -\log K_a = -\log 5.0 \times 10^{-5} = 4.30$

- 17. Formic acid, HCO_2H , has an ionization constant with the value: $K_a = 1.76 \times 10^{-4}$. Calculate the value of pK_b for the conjugate base of formic acid.
 - a. 3.75
 - b. 5.35
 - c. 8.65

$$K_a \times K_b = 1 \times 10^{-14}$$
 $K_b = 1 \times 10^{-14} / 1.76 \times 10^{-4} = 5.68 \times 10^{-11}$
 $pK_b = -\log K_b = -\log 5.68 \times 10^{-11} = 10.25$

18. A 0.100 M solution of an acid, HA, has a pH = 2.00. What is the value of the ionization constant, K_a for this acid?

a.
$$1.1 \times 10^{-2}$$

b. 1.1×10^{-3}
c. 1.1×10^{-4}
d. 1.0×10^{-3}
e. 1.0×10^{-4}

pH = 2.00

$$[\mathbf{H}^{+}] = 10^{-pH} = 10^{-2}$$

$$[\mathbf{H}^{+}] = \sqrt{(\mathbf{Ka} \times \mathbf{C}_{0})} = (\mathbf{Ka} \times \mathbf{C}_{0})^{1/2} = \sqrt{(\mathbf{K}_{a} \times \mathbf{0.1})}$$

$$[H^+]^2 = (Ka \times C_0) = (K_a \times 0.1)$$

$$(10^{-2})^2 = K_a \times 0.1$$

$$K_a = 10^{-4} / 0.1 = 1 \times 10^{-3}$$

19. A 0.400 M solution of an acid, HQ, has a pH = 1.301. What is the value of the ionization constant, K_a , for this acid?

a.
$$5.00 \times 10^{-2}$$

b. 1.25×10^{-3}
c. 5.56×10^{-3}
d. 6.25×10^{-3}
e. 7.14×10^{-3}

pH = 1.301

$$[H^+] = 10^{-pH} = 10^{-1.301} \text{ Or (shift log -1.301)} = 0.05$$

$$[\mathbf{H}^+] = \sqrt{(\mathbf{Ka} \times \mathbf{C_0})} = (\mathbf{Ka} \times \mathbf{C_0})^{1/2} = \sqrt{(\mathbf{K_a} \times \mathbf{0.1})}$$

$$[H^+]^2 = (Ka \times C_0) = (K_a \times 0.4)$$

$$(0.05)^2 = K_a \times 0.4$$

$$K_a = 2.5 \times 10^{-3} / 0.4 = 6.25 \times 10^{-3}$$

20. A 0.200 M solution of a weak base in water has a pH = 10.40 at 25° C. Calculate the value of K_b for this base.

a.
$$1.0 \times 10^{-5}$$

* b. 3.2×10^{-7}
c. 2.2×10^{-5}
d. 4.0×10^{-11}

pH = 10.40 $[H^{+}] = 10^{-pH} = 10^{-10.40} \text{ Or (shift log - 10.40)} = 3.98 \times 10^{-11}$ $[OH^{-}] = 1 \times 10^{-14} / [H^{+}] = 1 \times 10^{-14} / 3.98 \times 10^{-11} = 2.52 \times 10^{-14}$ $[OH^{-}]^{2} = (K_{b} \times C_{0}) = (K_{b} \times 0.2)$ $(2.52 \times 10^{-4})^2 = K_b \times 0.2$ $K_b = 6.3 \times 10^{-8} / 0.2 = 3.2 \times 10^{-7}$ 21. The ionization constant, K_a , for benzoic acid, $HC_7H_5O_2$, is 6.28×10^{-5} . What is the pH of a 0.15 molar solution of this acid? a. 0.82 b. 2.52 c. 4.20 d. 5.03 e. 5.79 $pH = -log [H^{+}] = -log \sqrt{K_a} \times C_0 = -log (K_a \times C_0)^{1/2} = -log (6.28 \times 10^{-5} \times 0.15)^{1/2}$ = -log 3.07 x 10^{-3} = 2.52 Extra Exercise 22. What is the conjugate acid of NH₃? A) NH_3^+ B) NH₄OH C) NH₂⁺ E) NH_4^+ D) NH₃ 23. The conjugate base of HSO₄ is A) HSO₄⁺ B) $H_3SO_4^+$ E) SO_4^{2-} C) OH D) H_2SO_4 24. The conjugate acid of HSO₄ is A) SO_4^{2-} $B) H^{+}$ C) HSO₄⁺ D) HSO₃⁺ E) H_2SO_4 25. What is the conjugate base of OH⁻? D) O^{2} $A) O^{-}$ B) H₂O C) H_3O^+ E) O_2 26. What is the pH of an aqueous solution at 25.0 °C in which [H⁺] is 0.00250 M? C) 2.60A) -2.60B) -3.40D) 3.40 E) 2.25

6

D) -11.4

E) -2.25

27. What is the pH of an aqueous solution at 25.0 °C in which [OH] is 0.00250 M?

(C) + 11.4

A) +2.60

B) - 2.60

28. What is the pH of an aqueous solution at 25.0 °C that contains 3.98×10^{-9} M				
hydronium ion $[H_3O^+]$?				
A) 5.60	B) 7.00	C) 8.40	D) 9.00	E) 3.98
29. What is the pH of an aqueous solution at 25.0 °C that contains 3.98×10^{-9} M				
hydroxide ion [OH ⁻]?				
A) 5.60	B) 9.00	C) 7.00	D) 3.98	E) 8.40
30. What is the concentration (in M) of hydronium ions in a solution at 25.0 °C with pH = 4.282 ? A) 4.28 B) 5.22×10^{-5} C) 1.92×10^{-10} D) 9.71 E) 1.66×10^4				
31. What is the concentration (in M) of hydroxide ions $[OH^-]$ in a solution at 25.0 °C with $pH = 4.282$?				
•	B) 1.66×10^4	C) 5.22 × 10	D^{-5} D) 1.9	0.01×10^{-10} E) 4.28
32. Calculate the pOH of a solution at 25.0 $^{\circ}$ C that contains 1.94 \times 10-10 M hydronium				
ions [H ₃ O ⁺]?.				
A) 1.94	B) 7.00	C) 9.71	D) 4.29	E) 14.0
33. Calculate the concentration (in M) of hydronium ions [H ₃ O $^+$] in a solution at 25.0 °C with a pOH of 4.223.				
A) 5.99×10^{-1}	9 B) 5.98×10^{-9}	C) 1.00×10^{-7}	D) 1.67×10^{-1}	E) 1.67×10^4
34. What is the pH of a 0.0150 M aqueous solution of barium hydroxide Ba(OH) ₂ ?				
A) 10.4	B) 1.52	C) 12.2	D) 12.5	E) 1.82
35. What is the pOH of a 0.0150 M solution of barium hydroxide Ba(OH) ₂ ? A) 12.2 B) 10.4 C) 1.82 D) 12.5 E) 1.52				

36. An aqueous solution contains 0.100 M NaOH at 25.0 $^{\circ}\text{C}.$ The pH of the solution is

A) 1.00

B) -1.00

C) 7.00

D) 13.0

E) 0.100