Chapter 7 Acid-Base - 1. The conjugate acid of HPO_4^{2-} is - a. H₂PO₄ - b. H₃PO₄ - c. PO_4^{3} - d. PO₄²- - * e. H₂PO₄ # HPO_4^{2-} is base (accept H^+) $HPO_4^{2-} + H^+ \rightarrow H_2PO_4^{-}$ - 2. The conjugate base of H_2AsO_4 is - a. H₂AsO₄ - b. H₃AsO₄ - c. HAsO₄ - * d. HAsO₄² - e. AsO_4^{3-} ## H_2AsO_4 is acid (donate H^+) H_2AsO_4 $\rightarrow H^+ + HAsO_4^2$ - 3. In the reaction, $HClO_3 + N_2H_4 \rightleftharpoons ClO_3 + N_2H_5^+$, which species are an acidbase pair? Acid Base conj base conj acid - a. HClO₃, N₂H₄ - b. N_2H_4 , ClO_3 - c. HClO₃, N₂H₅⁺ - * d. N_2H_4 , $N_2H_5^+$ - e. ClO_3^- , $N_2H_5^+$ - 4. In the reaction, $HClO_3 + N_2H_4 \rightleftharpoons ClO_3 + N_2H_5^+$, which two species are both bases? Acid Base conj base conj acid - a. HClO₃, N₂H₄ - b. HClO₃, ClO₃ - c. HClO₃, N₂H₅⁺ - d. N_2H_4 , $N_2H_5^+$ - * e. ClO₃, N₂H₄ - 5. In the reaction, $HSO_4^- + HS^- \rightleftharpoons H_2S + SO_4^{2-}$, which two species are both acids? Acid Base conj base conj acid - a. HSO₄, HS - * b. HSO₄, H₂S - c. HS^- , H_2S - d. HS⁻, SO₄²- - e. H_2S , SO_4^{2} 6. For the system $$NH_2OH + CH_3NH_3^+ \rightleftharpoons CH_3NH_2 + NH_3OH_2^+$$ Acid conj base conj acid the position of the equilibrium lies to the left. Which is the strongest acid in the system? - a. NH₂OH - b. CH₃NH₃⁺ - c. CH₃NH₂ - * d. NH₃OH₂⁺ - e. NH₂OH and CH₃NH₃⁺ are equal in acid strength, and are the strongest acids in the system ## **Direction always from** Strong \rightarrow weak #### Equilibrium lies to the left, this mean weak on left or strong on wright - 7. If the OH ion concentration in an aqueous solution at 25.0 °C is measured as 3.4 x 10^{-3} M, what is the pH? - a. 2.47 - b. 7.22 - c. 8.24 - * d. 11.53 - e. 16.47 ## $[OH] = 3.4 \times 10^{-3}$ $$[H^{+}]= 1 \times 10^{-14} / [OH^{-}] = 1 \times 10^{-14} / 3.4 \times 10^{-3} = 2.94 \times 10^{-12}$$ $pH = -log [H^{+}] = -log 2.94 \times 10^{-12} = 11.53$ - 8. The pH of a solution is measured to be 10.4. What are the values of $[H_3O^+]$ and [OH⁻] for this solution? - a. $[H_3O^+] = 4.0 \times 10^{-11}$, $[OH^-] = 4.0 \times 10^3$ b. $[H_3O^+] = 2.5 \times 10^{-4}$, $[OH^-] = 4.0 \times 10^{-11}$ c. $[H_3O^+] = 1.0 \times 10^{-10}$, $[OH^-] = 3.6 \times 10^{-4}$ * d. $[H_3O^+] = 4.0 \times 10^{-11}$, $[OH^-] = 2.5 \times 10^{-4}$ e. $[H_3O^+] = 9.6 \times 10^{-2}$, $[OH^-] = 2.8 \times 10^{-1}$ #### pH = 10.4 $$[H^{+}] = 10^{-pH} = 10^{-10.4}$$ (OR Shift log -10.4) = 4.0 x 10^{-11} [OH⁻] 1 x 10^{-14} / 4.0 x 10^{-11} = 2.5 x 10^{-4} - 9. If the OH ion concentration in an aqueous solution at 25.0 °C is 6.6 x 10⁻⁴ M, what is the molarity of the H⁺ ion? - a. $1.5 \times 10^{-1} \text{ M}$ - b. 1.5 x 10⁻⁴ M - c. $6.6 \times 10^{-10} \text{ M}$ - * d. 1.5 x 10⁻¹¹ M $$[OH^{-}] = 6.6 \times 10^{-4}$$ # $[H^{+}] = 1 \times 10^{-14} / [OH^{-}] = 1 \times 10^{-14} / 6.6 \times 10^{-4} = 1.5 \times 10^{-11}$ - 10. If the H^+ ion concentration in an aqueous solution at 25.0 $^{\circ}$ C has a value of 0.100 M, what is the pOH of the solution? - a. 1.00 - b. 7.00 - c. 12.00 - * d. 13.00 - e. 11.40 $$[\mathbf{H}^{+}] = \mathbf{0.100}$$ $$[OH^{-}] = 1 \times 10^{-14} / [H^{+}] = 1 \times 10^{-14} / 0.100 = 1 \times 10^{-13}$$ $$pH = -log [H^+] = -log 1 \times 10^{-13} = 13$$ - 11. If the H⁺ ion concentration in an aqueous solution at 25.0 °C has a value of 0.100 M, then what is the pH of the solution? - a. -1.00 - b. 0.100 - * c. 1.00 - d. 6.90 - e. 13.00 $$[\mathbf{H}^{+}] = \mathbf{0.100}$$ $$pH = -log [H^+] = -log 0.1 = 1$$ - 12. If the H⁺ ion concentration in an aqueous solution at 25.0 $^{\circ}$ C is measured as 6.6 x 10^{-4} M, what is the pH? - a. 3.00 - * b. 3.18 - c. 6.60 - d. 9.55 - e. 10.82 ## $[H^+] = 6.6 \times 10^{-4}$ $$pH = -log [H^+] = -log 6.6 \times 10^{-4} = 3.18$$ - 13. Calculate the pH of a beer in which the hydrogen ion concentration is 3.9 x 10⁻⁵ M. - * <mark>a. 4.4</mark> - b. 3.9 - c. 10.1 - d. 5.0 - e. 9.6 $$[H^+] = 3.9 \times 10^{-5}$$ pH = -log $[H^+]$ = - log 3.9 x 10^{-5} = 4.4 - 14. Calculate the pH of a 0.020 M solution of Ca(OH)₂ whose temperature is 25.0 °C. - a. 1.40 - b. 0.040 - c. 1.69 - * d. 12.60 - e. 12.30 #### $[Ca(OH)_2] = 0.020$ $$[OH^{-}] = 2 \times 0.020 = 0.04$$ $$[H^{+}] = 1 \times 10^{-14} / 0.04 = 2.5 \times 10^{-13}$$ $$pH = -log [H^+] = -log 2.5 \times 10^{-13} = 12.6$$ - 15. Given 0.01 M solutions of each of the following bases, which solution would have the highest pH? - a. Aniline ($C_6H_5NH_2$), $K_b = 3.9 \times 10^{-10}$ - pH = 8.3 - * b. Dimethylamine ((CH₃)₂NH), $K_b = 5.1 \times 10^{-4}$ - pH = 11.35 c. Hydrazine (N_2H_4) , $K_b = 1.3 \times 10^{-6}$ - pH = 10.05 - d. Methylamine (CH₃NH₂), $K_b = 4.4 \times 10^{-4}$ - pH= 11.32 e. Pyridine (C_5H_5N), $K_b = 1.7 \times 10^{-9}$ pH = 8.6 All weak bases a) $$[OH^{-}] = \sqrt{(Kb \times C_0)} = (Ka \times C_0)^{1/2} = \sqrt{(3.9 \times 10^{-10} \times 0.01)} = 1.97 \times 10^{-6}$$ pOH=-log 1.97 x 10⁻⁶ =5.7 $$pH = 14 - pOH = 8.3$$ Repeat for all b to e Conclusion: you can find the highest K_b is highest $[OH^*]$ and the most basic solution which is the highest pH - 16. The ionization constant, K_a , for macnic acid is 5.0 x 10^{-5} . What is the p K_a of this acid? - a. 2.00×10^4 - * b. 4.30 - c. 5.70 - d. 1.75×10^{-1} - e. 10.70 ## $pK_a = -\log K_a = -\log 5.0 \times 10^{-5} = 4.30$ - 17. Formic acid, HCO_2H , has an ionization constant with the value: $K_a = 1.76 \times 10^{-4}$. Calculate the value of pK_b for the conjugate base of formic acid. - a. 3.75 - b. 5.35 - c. 8.65 $$K_a \times K_b = 1 \times 10^{-14}$$ $K_b = 1 \times 10^{-14} / 1.76 \times 10^{-4} = 5.68 \times 10^{-11}$ $pK_b = -\log K_b = -\log 5.68 \times 10^{-11} = 10.25$ 18. A 0.100 M solution of an acid, HA, has a pH = 2.00. What is the value of the ionization constant, K_a for this acid? a. $$1.1 \times 10^{-2}$$ b. 1.1×10^{-3} c. 1.1×10^{-4} d. 1.0×10^{-3} e. 1.0×10^{-4} pH = 2.00 $$[\mathbf{H}^{+}] = 10^{-pH} = 10^{-2}$$ $$[\mathbf{H}^{+}] = \sqrt{(\mathbf{Ka} \times \mathbf{C}_{0})} = (\mathbf{Ka} \times \mathbf{C}_{0})^{1/2} = \sqrt{(\mathbf{K}_{a} \times \mathbf{0.1})}$$ $$[H^+]^2 = (Ka \times C_0) = (K_a \times 0.1)$$ $$(10^{-2})^2 = K_a \times 0.1$$ $$K_a = 10^{-4} / 0.1 = 1 \times 10^{-3}$$ 19. A 0.400 M solution of an acid, HQ, has a pH = 1.301. What is the value of the ionization constant, K_a , for this acid? a. $$5.00 \times 10^{-2}$$ b. 1.25×10^{-3} c. 5.56×10^{-3} d. 6.25×10^{-3} e. 7.14×10^{-3} pH = 1.301 $$[H^+] = 10^{-pH} = 10^{-1.301} \text{ Or (shift log -1.301)} = 0.05$$ $$[\mathbf{H}^+] = \sqrt{(\mathbf{Ka} \times \mathbf{C_0})} = (\mathbf{Ka} \times \mathbf{C_0})^{1/2} = \sqrt{(\mathbf{K_a} \times \mathbf{0.1})}$$ $$[H^+]^2 = (Ka \times C_0) = (K_a \times 0.4)$$ $$(0.05)^2 = K_a \times 0.4$$ $$K_a = 2.5 \times 10^{-3} / 0.4 = 6.25 \times 10^{-3}$$ 20. A 0.200 M solution of a weak base in water has a pH = 10.40 at 25° C. Calculate the value of K_b for this base. a. $$1.0 \times 10^{-5}$$ * b. 3.2×10^{-7} c. 2.2×10^{-5} d. 4.0×10^{-11} pH = 10.40 $[H^{+}] = 10^{-pH} = 10^{-10.40} \text{ Or (shift log - 10.40)} = 3.98 \times 10^{-11}$ $[OH^{-}] = 1 \times 10^{-14} / [H^{+}] = 1 \times 10^{-14} / 3.98 \times 10^{-11} = 2.52 \times 10^{-14}$ $[OH^{-}]^{2} = (K_{b} \times C_{0}) = (K_{b} \times 0.2)$ $(2.52 \times 10^{-4})^2 = K_b \times 0.2$ $K_b = 6.3 \times 10^{-8} / 0.2 = 3.2 \times 10^{-7}$ 21. The ionization constant, K_a , for benzoic acid, $HC_7H_5O_2$, is 6.28×10^{-5} . What is the pH of a 0.15 molar solution of this acid? a. 0.82 b. 2.52 c. 4.20 d. 5.03 e. 5.79 $pH = -log [H^{+}] = -log \sqrt{K_a} \times C_0 = -log (K_a \times C_0)^{1/2} = -log (6.28 \times 10^{-5} \times 0.15)^{1/2}$ = -log 3.07 x 10^{-3} = 2.52 Extra Exercise 22. What is the conjugate acid of NH₃? A) NH_3^+ B) NH₄OH C) NH₂⁺ E) NH_4^+ D) NH₃ 23. The conjugate base of HSO₄ is A) HSO₄⁺ B) $H_3SO_4^+$ E) SO_4^{2-} C) OH D) H_2SO_4 24. The conjugate acid of HSO₄ is A) SO_4^{2-} $B) H^{+}$ C) HSO₄⁺ D) HSO₃⁺ E) H_2SO_4 25. What is the conjugate base of OH⁻? D) O^{2} $A) O^{-}$ B) H₂O C) H_3O^+ E) O_2 26. What is the pH of an aqueous solution at 25.0 °C in which [H⁺] is 0.00250 M? C) 2.60A) -2.60B) -3.40D) 3.40 E) 2.25 6 D) -11.4 E) -2.25 27. What is the pH of an aqueous solution at 25.0 °C in which [OH] is 0.00250 M? (C) + 11.4 A) +2.60 B) - 2.60 | 28. What is the pH of an aqueous solution at 25.0 °C that contains 3.98×10^{-9} M | | | | | |---|---------------------------------|--------------------------|--------------------------|--------------------------------| | hydronium ion $[H_3O^+]$? | | | | | | A) 5.60 | B) 7.00 | C) 8.40 | D) 9.00 | E) 3.98 | | | | | | | | 29. What is the pH of an aqueous solution at 25.0 °C that contains 3.98×10^{-9} M | | | | | | hydroxide ion [OH ⁻]? | | | | | | A) 5.60 | B) 9.00 | C) 7.00 | D) 3.98 | E) 8.40 | | 30. What is the concentration (in M) of hydronium ions in a solution at 25.0 °C with pH = 4.282 ? A) 4.28 B) 5.22×10^{-5} C) 1.92×10^{-10} D) 9.71 E) 1.66×10^4 | | | | | | 31. What is the concentration (in M) of hydroxide ions $[OH^-]$ in a solution at 25.0 °C with $pH = 4.282$? | | | | | | • | B) 1.66×10^4 | C) 5.22 × 10 | D^{-5} D) 1.9 | 0.01×10^{-10} E) 4.28 | | | | | | | | 32. Calculate the pOH of a solution at 25.0 $^{\circ}$ C that contains 1.94 \times 10-10 M hydronium | | | | | | ions [H ₃ O ⁺]?. | | | | | | A) 1.94 | B) 7.00 | C) 9.71 | D) 4.29 | E) 14.0 | | 33. Calculate the concentration (in M) of hydronium ions [H ₃ O $^+$] in a solution at 25.0 °C with a pOH of 4.223. | | | | | | A) 5.99×10^{-1} | 9 B) 5.98×10^{-9} | C) 1.00×10^{-7} | D) 1.67×10^{-1} | E) 1.67×10^4 | | 34. What is the pH of a 0.0150 M aqueous solution of barium hydroxide Ba(OH) ₂ ? | | | | | | A) 10.4 | B) 1.52 | C) 12.2 | D) 12.5 | E) 1.82 | | 35. What is the pOH of a 0.0150 M solution of barium hydroxide Ba(OH) ₂ ? A) 12.2 B) 10.4 C) 1.82 D) 12.5 E) 1.52 | | | | | 36. An aqueous solution contains 0.100 M NaOH at 25.0 $^{\circ}\text{C}.$ The pH of the solution is A) 1.00 B) -1.00 C) 7.00 D) 13.0 E) 0.100