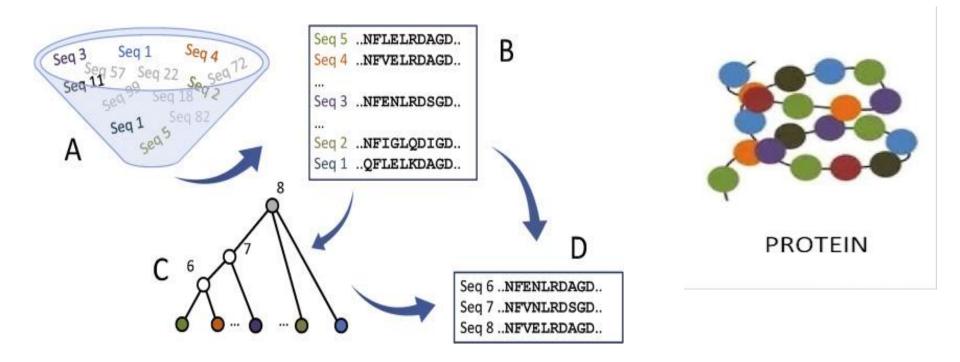


Credit: Patric Sandri


Biotechnological & protein-engineering implications of ancestral protein resurrection

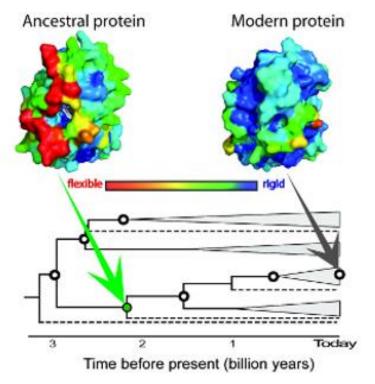
Contents

- Introduction
- Utilizing ancestral reconstruction in protein biotechnology.
 - Enhanced stability.
- Conformational flexibility/diversity.
 - Promiscuity.
 - Concluding remarks.

Introduction

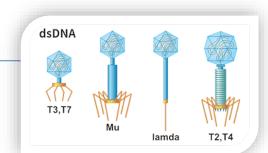
 Reasonable sequences of ancestral proteins can be derived from the sequences of their modern descendants.

Resurrected ancestral proteins


- Can be prepared in the laboratory.
- Subjected to experimental works.
- have remarkable properties reflecting ancestral adaptations.
- Differed from (modern/extant proteins).

'resurrected ancestral proteins'

 Precambrian proteins show large numbers of amino acid differences with their modern descendants.



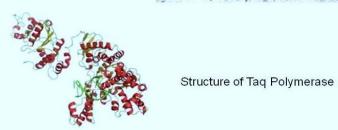
⁵ Risso...Sánchez-Ruiz { Nat Commun 8: 16113 }

Utilizing ancestral reconstruction in protein biotechnology.

Example

• Phage T7 recruits E. coli thioredoxin.

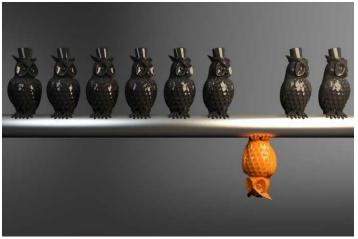
- It can be replaced by **ancestral Precambrian thioredoxins that** could not be recruited by the phage and rendered E. coli **resistant to infection.**
- Applying this approach to engineering of virus resistance in plants.


Primordial trait

 High stability is a very convenient property from a biotechnological point of view because low stability compromises many practical applications of proteins

Several approaches for protein stabilization

- Search for stable proteins in thermophilic organisms
- Ancestral proteins higher thermal stability compared to extant proteins.
- Exception: some extant proteins may exhibit higher

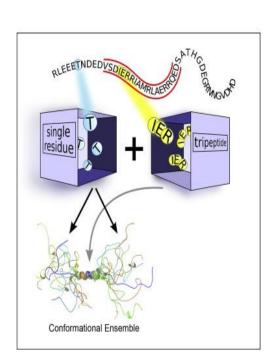

stability.

Sequence differences

 Exploring the differences between molecular mechanism of stability of the ancestral and that of thermophilic extant sequences would provide additional tools for biotechnology.

Conformational flexibility/diversity

Proteins dynamically interconvert between conformations in the native state to achieve their function, including:

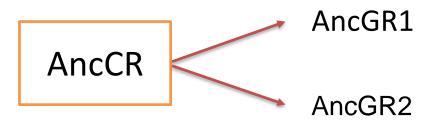

- Allosteric signaling
- Protein-ligand recognition
- Electron transfer
- Catalysis

Ensemble model

Protein causes a variety of conformations through:

- Side-chain rotations
- Global changes through domain rearrangement.
- Allostery

Cont.


 Mutations throughout protein evolution alter conformational dynamics, change the distribution of the ensemble and lead to new functions by dynamic motions and adaption to different environments.

Protein design

 Computational protein design methods have been used to introduce completely novel enzymatic functions in protein scaffolds initially lacking these abilities

Example regarding to change in flexibility

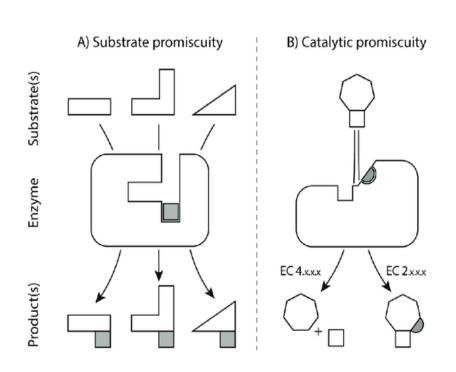
- AncCR & AncGR1 have a promiscuous binding affinity to both aldosterone, cortisol.
- AncGR2 specifically binds to cortisol.
- AncGR1 and AncGR2, diverge functionally through 36 mutations, have highly similar structures.

Cont.

 AncCR and AncGR1 have a flexible binding pocket, suggesting flexibility plays a role.

 In contrast, the mutations of AncGR2 lead to a rigid binding pocket, suggesting that binding pocket becomes cortisol specific.

Promiscuity


- One physiologically relevant function.
- **de-toxification**, are highly promiscuous: can degrade a wide variety of toxics.
- This kind of promiscuity is often considered as generalist nature of **ancestral enzymes**.

classification of enzyme promiscuity

(A)Substrate promiscuity/multispecificity:

A certain enzyme can perform the same catalytic reaction on a diverse set of substrates.

(B) Catalytic promiscuity: Different chemical transformations are allowed by the same enzyme, according to which this can be classified with various E.C. numbers

17 (Piedrafita, Keller, & Ralser, 2015)

Concluding remarks

 Ancestral proteins show enhanced levels of activity compared to their modern descendants.

 Resurrected ancestral proteins can display high stability and enhanced promiscuity features that are advantageous in biotechnological applications.

References

 Merkl, R. and R. Sterner, Reconstruction of ancestral enzymes. Perspectives in Science, 2016. 9: p. 17-23.

- Piedrafita, G., M. Keller, and M. Ralser, The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions. Biomolecules, 2015. 2015: p. 2101-2122.
- And main review in cover page.

