

College of Engineering *GE106:Introduction to Engineering Design*

An Overview of Engineering Design

By

Matthew Amao

Outline

- What is Engineering Design?
- Importance of Engineering Design
- ABET Engineering Design Requirements
- The Steps Used in the Design Process
 - Problem Statement
 - Brainstorming
 - Search and Research
 - List and Evaluate Alternative Solutions
 - Choose the Best Solution
 - Construction-Create a Prototype or Model
 - Analysis & Testing
 - Final Testing
 - Communication
- Summary

What is Engineering Design?

- Engineering design is the process of devising a system, component or process to meet desired needs.
- It is a decision making process in which the , basic sciences, mathematics and engineering are applied to optimally <u>convert</u> <u>resources to meet</u> a stated <u>objective</u>.

امعة

الملك سعود King Saud University

Monday, September 16, 2019

- Among the <u>fundamental blocks</u> of this process are: <u>objectives</u>, <u>criteria</u>, <u>synthesis</u>, <u>analysis</u>, <u>construction</u>, <u>testing</u>, and <u>evaluation</u>.
- In addition to these blocks, it is essential to consider <u>realistic constraints</u> such as economic factors, safety, reliability, aesthetics, ethics and social factors.

- <u>70%</u> of a product's total <u>cost</u> (design, manufacturing and installation) is <u>determined by</u> its <u>design</u>
- Studies have shown that 50 to 80% of the <u>life cycle costs</u>* of products (maintenance, energy, etc.) are <u>influenced by</u> engineering <u>design</u>
- Costs Include:
 - Material costs
 - Facilities
 - Tooling
 - Labor
 - Other support costs

u o D

الملك سعود King Saud University

An ABET Requirement

(Accreditation Board for Engineering and Technology)

 Every Engineering Department must include a major engineering design experience that builds upon the <u>fundamental concepts</u> of: mathematics, basic sciences, humanities, social sciences, engineering topics, and communication skills.

- The scope of the design experience within a program should <u>match the</u> <u>requirements</u> of practice within that <u>discipline</u>.
- All design work should **not** be done in isolation by individual students; <u>team</u> <u>efforts are encouraged</u> where appropriate.
- Many projects at the Junior/Senior level are team oriented.

تا م ک آ

الملك سعود King Saud University

College of Engineering

Engineering

- What is engineering?
- What is your experience with engineering?
- What does it mean to learn to be an engineer in school?
- Can you name one thing in this room that was not developed, produced, or installed by an engineer?
- Can you think of a profession that is affecting your life more pervasively than engineering?
- Engineering is the Art of Design
- Starts with a <u>need</u> and end with a <u>product</u>

Even in the smallest and most remote places on earth, engineering is there shaping life and the environment.

Science versus Engineering

THE DIFFERENCE

COMPUTER SCIENTIST

- Science : The study of nature and natural processes
- Engineering: The use of knowledge of nature and natural processes to solve problems

"Scientists discover the world that exists; engineers create the world that never was." - Theodore Von Karman

Who is the Best Engineer?

 "The best engineer is the person who can provide the simplest and more effective solution to solve a problem"

K. Åström

C Original Artist Reproduction rights obtainable from www.CartoonStock.com

"It's simpler keeping just the one cage."

The Steps Used in the Design Process

- 1. <u>Define</u> the Problem (Problem Statement)
- 2. <u>Brainstorm</u> for creative ideas
- 3. <u>Search</u> and *re*search
- 4. Develop Ideas
- 5. Analyze <u>alternative solutions</u> and <u>choose the best one</u>
- 6. <u>Model</u> or prototype
- 7. <u>Test</u> and Evaluate
- 8. <u>Improve</u> if needed
- 9. <u>Communicate</u> results

حــامـعــة

الملك سعود King Saud University

Step 1: Problem Statement

Problem Statement:

"The current box is easily damaged during transportation"

Objective:

"Design a stronger box for our new product"

Better Objective (a broader objective):

"Design an improved box*"

Importance of Accurate Objective and Statement **

Problem Definition

Design

Installation

جـــامــعـــة الملكسعەد

King Saud University

Customer Need

Problem Statement

- This is the single <u>most important step</u> in the design process.
- Only when you can specify the problem can you hope to achieve your goal.
- Loss of efforts and efficiency occurs when trying to solve <u>unclear problems</u>.
- If this step is done incorrectly or incompletely it results in a failure of the design.
- It is important to <u>define the *true problem*</u> one is solving, not just the symptoms of the problem or the perceived problem.

Objectives

- **Objectives** are a function of <u>needs</u>.
- Objectives should be **SMART** *i.e.*,

Specific – Exact, precise, detailed, definite, unambiguous. Measurable – Quantifiable, computable, calculable, determinate. Achievable – feasible, possible, doable, attainable. Realistic – sensible, practical, pragmatic reasonable, rational. Time-bounded – time-constrained, of a spcecified duration.

Step 2: Brainstorming

- Think "outside the box".
- Generate <u>creative</u> ideas.
- Explore <u>other members</u>' ideas.
- <u>Avoid criticism</u>/judgment.

*Do not criticize during brainstorming! *Criticism will be applied at a later stage

Step 3: Search and Research

Introduction to Engineering Design GE-106

- Search for: <u>finding</u> a product or checking the price of an item.
- Research*: finding the answers to more complicated questions or looking at <u>multiple aspects</u> of an issue.
- Possible resources: Publications, Internet, Market, Patent listings, Sales catalogs, Experts

Creativity

Creativity - Lateral Thinking

Move three toothpicks and only one coin so that the fish swims in the opposite direction

Creativity can lead to all kind-of ideas

Creative people usually have busy thoughts...

Step 4: List and Evaluate Alternative Solutions

One possible solution!!

- Be critical
- Edison: "It is easy to obtain <u>100 patents</u> if you also have <u>5000</u> <u>unsuccessful inventions</u>*"

Step 5: Choose the Best Solution

	Weight	Rate for Design 1	Rate for Design 2	Rate for Design 3
1. Cost				
2. Production difficulty				
3. Size, weight, strength				
4. Appearance				
5. Convenience				
6. Safety				
7. Legal issues				
8. Reliability/durability				
9. Customer appeal				
TOTAL points	100	points=rate*weight		

Step 6 – Construction, Analysis and Testing

Motor Prototype Testing

Toyota RAV4 Prototype Testing

Break Squeal FEA Analyses

Valve Flow CFD Analyses

Construction, Analysis and Testing (Contd.)

جامعة الملكسعود King Saud University College of Engineering

Step 8: Final Evaluation & Improvements

Develop the best design

Step 8: Communicate The Results

جامىيە الملك سعود King Saud University

Communicate and <u>report on</u> all the final <u>details</u> of the design through:

- Engineering Notebook (<u>logbook</u>)
- Written <u>reports</u>
- Technical presentation
- Training material, catalogue, manuals*

College of Engineering *GE106:Introduction to Engineering Design*

An Overview of Engineering Design

By

Matthew Amao