DEPARTMENT OF MATHEMATICS

II MID TERM EXAM (SEM II) 1421-1422
NOTE: Attempt all Questions.

Question: 1 . (i)Find the distance of $(\mathbf{0 , 0 , 0 ,})$ from the line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$.
(ii) Find the equation of the plane determined by lines :

$$
\begin{equation*}
\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-4}{4} \quad \text { and } \quad x=y=z . \tag{6}
\end{equation*}
$$

Question: 2 . (i)Let $A(1,-1,2), B(2,-3,1)$, and $C(-1,5,-2)$ be the points in a plane, find the area of triangle ABC.
(ii) If the planes $a x+2 y+z=4$ and $2 x-y-a z=1$ are perpendicular to each other, find a and also find equation of the line of intersection.

Question: 3 .(i) Check whether lines $x=1+2 t, y=2-t, z=3 t$ and $\frac{x-2}{3}=\frac{1-y}{1}=\frac{z+5}{1}$ intersect, if they intersect find the point of intersection.
(ii) Identify the surface $4-x^{2}+2 y^{2}-z^{2}=0$. Find its traces on the coordinate planes and then sketch the surface.

Question: 4 .(i) Let a curve \mathbf{C} be given by $r(t)=t \cos t i+t \sin t j+t k$
(a)Find a unit tangent vector to \mathbf{C} at $t=\frac{\pi}{2}$,
(b) Find the equation of the tangent line to \mathbf{C} at point $\left(0, \frac{\pi}{2}, \frac{\pi}{2}\right)$
(a)Let $r(t)=t i+t^{2} j+t^{3} k$ be the position vector of moving point \mathbf{P}, determine tangential and normal components of acceleration and curvature at the point $(1,1,1)$.

