Conformal vector fields on submanifolds of a Euclidean space

By HANAN ALOHALI (Riyadh), HAILA ALODAN (Riyadh)
and SHARIEF DESHMUKH (Riyadh)

Abstract

In this paper, we investigate n-dimensional immersed compact submanifold M of a Euclidean space R^{n+p}, with the immersion $\psi: M \rightarrow R^{n+p}$, where the tangential component ψ^{T} of ψ is a conformal vector field. A characterization of n-sphere in the Euclidean space R^{n+p} is obtained. Also conditions under which ψ^{T} is a conformal vector field in the general case and those in the special case where the submanifold has flat normal connection and $p=2$ are obtained as well.

1. Introduction

Given an immersed n-dimensional submanifold M of a Euclidean space $\left(R^{n+p},\langle\rangle,\right)$, where \langle,$\rangle is the Euclidean metric, one of the important questions$ is to find conditions under which the submanifold M lies on the hypersphere $S^{n+p-1}(c)$ of the Euclidean space R^{n+p}. This question has been studied in [ALO07], [ALO02], [ALOD02]. Recall that a smooth vector field ξ on a Riemannian manifold (M, g) is said to be a conformal vector field if its flow consists of conformal transformations of the Riemannian manifold (M, g) and it is equivalent to the requirement that the vector field ξ satisfies

$$
£_{\xi} g=2 \rho g,
$$

where $£_{\xi}$ is the Lie derivative with respect to the vector field ξ, and ρ is a smooth function on M, called the potential function of the conformal vector

[^0]field ξ. Conformal vector fields have been used to characterize spheres among compact Riemannian manifolds (cf. [DES12], [DES08], [DES10]). If M is an n-dimensional immersed submanifold of the Euclidean space R^{n+p} with the immersion $\psi: M \rightarrow R^{n+p}$, then treating ψ as the position vector field of points of M, we can express it as
$$
\psi=\psi^{T}+\psi^{\perp}
$$
where ψ^{T} is the tangential component of ψ to M, and ψ^{\perp} is the normal component of ψ. Thus, we get a globally defined vector field ψ^{T} on the submanifold M, which might be either a Killing vector field or a conformal vector field. However, the covariant derivative of ψ^{T} being symmetric (see Section 2), asking ψ^{T} be a Killing vector field, will not yield interesting geometry. Therefore, it is a natural question to find conditions under which the vector field ψ^{T} is a conformal vector field on M, as well as to study the geometry of the submanifold for which the vector field ψ^{T} is a conformal vector field. In this paper, we address these questions. It is interesting to note that in the case when ψ^{T} is a nonzero conformal vector field on the compact submanifold M, under suitable restrictions on the Ricci curvatures, the submanifold is shown to be isometric to the sphere $S^{n}(c)$ of constant curvature c (cf. Theorem 3.1). We also find conditions under which the vector field ψ^{T} is a conformal vector field on the submanifold M (cf. Theorems 3.2 and 4.1). Finally, we use the conformal vector field associated to the normal component ψ^{\perp} on the submanifold M to find a necessary and sufficient condition for the submanifold to lie on the hypersphere $S^{n+p-1}(c)$ (cf. Theorem 3.3).

2. Preliminaries

Let M be an n-dimensional submanifold of the Euclidean space R^{n+p} with immersion $\psi: M \rightarrow R^{n+p}$. We denote by \langle,$\rangle and \bar{\nabla}$ the Euclidean metric and the Euclidean connection, respectively, on R^{n+p}, we also denote by g and ∇ the induced metric and the Riemannian connection on the submanifold M. Then, we have the following equations for the submanifold M (cf. [CHE83]):

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N \tag{2.1}
\end{equation*}
$$

$X, Y \in \mathfrak{X}(M), N \in \Gamma(\Lambda)$, where $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on $M, \Gamma(\Lambda)$ is the space of smooth sections of the normal bundle Λ of M, h is the second fundamental form, A_{N} is the Weingarten map with respect to the normal $N \in \Gamma(\Lambda)$ which is related to the second fundamental form h by

$$
g\left(A_{N} X, Y\right)=g(h(X, Y), N), \quad X, Y \in \mathfrak{X}(M),
$$

and ∇^{\perp} is the connection in the normal bundle Λ. We also have the Gauss equation

$$
\begin{equation*}
R(X, Y) Z=A_{h(Y, Z)} X-A_{h(X, Z)} Y, \quad X, Y, Z \in \mathfrak{X}(M) \tag{2.2}
\end{equation*}
$$

where $R(X, Y) Z, X, Y, Z \in \mathfrak{X}(M)$ is the curvature tensor field of the submanifold M. The Ricci tensor field of M is given by

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=n g(h(X, Y), H)-\sum_{i=1}^{n} g\left(h\left(X, e_{i}\right), h\left(Y, e_{i}\right)\right), \tag{2.3}
\end{equation*}
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local orthonormal frame on M, and

$$
H=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right)
$$

is the mean curvature vector field.
The Ricci operator Q is the symmetric operator defined by

$$
\operatorname{Ric}(X, Y)=g(Q(X), Y), \quad X, Y \in \mathfrak{X}(M)
$$

If we express $\psi=\psi^{T}+\psi^{\perp}$, where $\psi^{T} \in \mathfrak{X}(M)$ is the tangential component and $\psi^{\perp} \in \Gamma(\Lambda)$ is the normal component of ψ, and if we denote by $B=A_{\psi^{\perp}}$ the Weingarten map with respect to the normal vector field ψ^{\perp}, then using equation (2.1), we get

$$
\begin{equation*}
\nabla_{x} \psi^{T}=X+B X, \quad \nabla_{X}^{\perp} \psi^{\perp}=-h\left(X, \psi^{T}\right), \quad X, Y \in \mathfrak{X}(M) \tag{2.4}
\end{equation*}
$$

We use the mean curvature vector field H to define a smooth function F : $M \rightarrow R$ on the submanifold M by $F=\left\langle H, \psi^{\perp}\right\rangle$. Now, for an n-dimensional submanifold $\psi: M \rightarrow R^{n+p}$, and a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ on M, we have

$$
\begin{aligned}
\operatorname{div} \psi^{T} & =\sum_{i=1}^{n}\left\langle\nabla_{e_{i}} \psi^{T}, e_{i}\right\rangle=\sum_{i=1}^{n}\left\langle e_{i}+A_{\psi^{\perp}} e_{i}, e_{i}\right\rangle \\
& =n+\sum_{i=1}^{n}\left\langle h\left(e_{i}, e_{i}\right), \psi^{\perp}\right\rangle=n+n\left\langle H, \psi^{\perp}\right\rangle=n(1+F),
\end{aligned}
$$

that is,

$$
\begin{equation*}
\operatorname{div} \psi^{T}=n(1+F) . \tag{2.5}
\end{equation*}
$$

We have the following Lemmas:

Lemma 2.1 (Hsiung-Minkowski formula). Let M be an n-dimensional compact submanifold of the Euclidean space R^{n+p}. Then

$$
\int_{M}(1+F) d v=0 .
$$

Lemma 2.2 ([ALO07]). Let M be an n-dimensional submanifold of R^{n+p}. Then the tensor field B satisfies
(i) $\operatorname{Tr} B=n F$;
(ii) $(\nabla B)(X, Y)-(\nabla B)(Y, X)=R(X, Y) \psi^{T}$;
(iii) $\sum_{i=1}^{n}(\nabla B)\left(e_{i}, e_{i}\right)=n \nabla F+Q\left(\psi^{T}\right)$;
where $(\nabla B)(X, Y)=\nabla_{X} B Y-B \nabla_{X} Y X, Y \in \mathfrak{X}(M)$.
Lemma 2.3 ([ALO07]). Let $\psi: M \rightarrow R^{n+p}$ be an n-dimensional compact submanifold. Then a necessary and sufficient condition for $\psi(M) \subset S^{n+p-1}(c)$ is that $\psi^{T}=0$ and $F=-1$.

Definition 2.1. A smooth vector field ξ on a Riemannian manifold (M, g) is said to be a conformal vector field if there exists a smooth function ρ on M that satisfies $£_{\xi} g=2 \rho g, \rho$ called a potential function, where $£_{\xi} g$ is the Lie derivative of g with respect to ξ. We say that ξ is a non-trivial conformal vector field if the potential function ρ is not a constant. A conformal vector field ξ is said to be a gradient conformal vector field if $\xi=\nabla f$, for a smooth function f on M.

Using Koszul's formula, we immediately obtain the following for a vector field ξ on M :

$$
2 g\left(\nabla_{X} \xi, Y\right)=\left(£_{\xi} g\right)(X, Y)+d \eta(X, Y), \quad X, Y \in \mathfrak{X}(M)
$$

where η is the 1 -form dual to ξ, that is, $\eta(X)=g(X, \xi), X \in \mathfrak{X}(M)$. Define a skew-symmetric tensor field φ of type $(1,1)$ on M by $d \eta(X, Y)=2 g(\varphi X, Y)$, and a symmetric tensor filed C of type $(1,1)$ by

$$
£_{\xi} g(X, Y)=2 g(C X, Y), \quad X, Y \in \mathfrak{X}(M),
$$

then, for a smooth vector field ξ on M, we have

$$
\begin{equation*}
\nabla_{X} \xi=C X+\varphi X, \quad X, Y \in \mathfrak{X}(M) . \tag{2.6}
\end{equation*}
$$

Using the definition of a conformal vector field and equation (2.6), we have

Lemma 2.4 ([DES12]). Let ξ be a conformal vector field on an n-dimensional Riemannian manifold (M.g), with potential function ρ. Then

$$
\nabla_{X} \xi=\rho X+\varphi X, \quad X \in \mathfrak{X}(M) \quad \text { and } \quad \operatorname{div} \xi=n \rho
$$

Remark 2.1 ([DES08]). Let ξ be a conformal gradient vector field on a compact Riemannian manifold (M, g). Then, for $\rho=n^{-1} \operatorname{div} \xi$,

$$
\int_{M} \rho d v=0 .
$$

Let λ_{1} be the nonzero eigenvalue of the Laplacian operator Δ acting on the smooth functions of a compact Riemannian manifold (M, g), where we adopt the sign convention of the Laplacian operator as $\Delta f=\operatorname{div} \nabla f$. Then, for a smooth function f on M satisfying

$$
\int_{M} f d v=0
$$

by minimum principle we have

$$
\begin{equation*}
\int_{M}\|\nabla f\|^{2} d v \geq \lambda_{1} \int_{M} f^{2} d v \tag{2.7}
\end{equation*}
$$

and the equality holds if and only if $\Delta f=-\lambda_{1} f$. Moreover, for a smooth function f, the Hessian operator H_{f} is given by

$$
H_{f} X=\nabla_{X} \nabla f, \quad X \in \mathfrak{X}(M),
$$

and on a compact Riemannian manifold, we have the following Bochner formula:

$$
\begin{equation*}
\int_{M}\left\{\operatorname{Ric}(\nabla f, \nabla f)+\left\|H_{f}\right\|^{2}-(\Delta f)^{2}\right\} d v=0 \tag{2.8}
\end{equation*}
$$

3. Submanifolds with ψ^{T} as conformal vector field

Let M be an n-dimensional submanifold of the Euclidean space R^{n+p}, with immersion $\psi: M \rightarrow R^{n+p}$. In this section, we study the geometry of the submanifold M for which the vector field ψ^{T} is a conformal vector field. First, we prove the following Lemmas.

Lemma 3.1. Let M be an n-dimensional submanifold of the Euclidean space R^{n+p}, with immersion $\psi: M \rightarrow R^{n+p}$ and $f=\frac{1}{2}\left\|\psi^{\perp}\right\|^{2}$. If the gradient ∇f of the smooth function f is a conformal vector field, then

$$
\operatorname{Ric}\left(\psi^{T}, \psi^{T}\right)+n \psi^{T}(F)+n \rho+n F+\|B\|^{2}=0
$$

where ρ is the potential function of ∇f.
Proof. As ∇f is a conformal vector field with potential function say ρ, we have

$$
£_{\nabla f} g=2 \rho g .
$$

Since the 1-form dual to the conformal vector field ∇f is closed, we have $\varphi=0$, and Lemma 2.4 takes the form

$$
\begin{equation*}
\nabla_{X}(\nabla f)=\rho X \quad \text { and } \quad \Delta f=n \rho, \tag{3.1}
\end{equation*}
$$

where Δ is the Laplacian operator. Now, for $X \in \mathfrak{X}(M)$, we have

$$
\begin{aligned}
g(\nabla f, X) & =X(f)=X\left(\frac{1}{2}\left\|\psi^{\perp}\right\|^{2}\right)=g\left(\bar{\nabla}_{X} \psi^{\perp}, \psi^{\perp}\right)=g\left(-A_{\psi^{\perp}} X+\nabla \frac{\perp}{X} \psi^{\perp}, \psi^{\perp}\right) \\
& =g\left(\nabla \frac{\perp}{X} \psi^{\perp}, \psi^{\perp}\right)=-g\left(h\left(X, \psi^{T}\right), \psi^{\perp}\right)=-g\left(A_{\psi^{\perp}} \psi^{T}, X\right)
\end{aligned}
$$

which gives $\nabla f=-A_{\psi \perp} \psi^{T}=-B \psi^{T}$. Putting $\xi=\psi^{T}$, we get $\nabla f=-B \xi$, and consequently,

$$
\nabla_{X}(\nabla f)=-\nabla_{X} B \xi=-\left[(\nabla B)(X, \xi)+B \nabla_{X} \xi\right]
$$

which, using equation (2.4), gives

$$
\begin{align*}
\nabla_{X}(\nabla f) & =-(\nabla B)(X, \xi)-B(X+B X) \\
& =-(\nabla B)(X, \xi)-B X-B^{2} X \tag{3.2}
\end{align*}
$$

Now, using Lemma 2.2 and the fact that B is a symmetric operator, we have

$$
\begin{align*}
\sum_{i=1}^{n} g\left((\nabla B)\left(e_{i}, \xi\right), e_{i}\right) & =g\left(\sum_{i=1}^{n}(\nabla B)\left(e_{i}, e_{i}\right), \xi\right) \\
& =g(n \nabla F+Q(\xi), \xi)=n \xi(F)+\operatorname{Ric}(\xi, \xi) \tag{3.3}
\end{align*}
$$

Also, using equations (3.1) and (3.2), we get

$$
\begin{align*}
\sum_{i=1}^{n} g\left((\nabla B)\left(e_{i}, \xi\right), e_{i}\right) & =\sum_{i=1}^{n} g\left(-\rho e_{i}-B e_{i}-B^{2} e_{i}, e_{i}\right) \\
& =-n \rho-\operatorname{Tr} B-\|B\|^{2} . \tag{3.4}
\end{align*}
$$

Then, using $\operatorname{Tr} B=n F$ and equations (3.3) and (3.4), we arrive at

$$
\operatorname{Ric}(\xi, \xi)+n \xi(F)+n \rho+n F+\|B\|^{2}=0
$$

which proves the Lemma.
Lemma 3.2. Let $\psi: M \rightarrow R^{n+p}$ be an n-dimensional compact submanifold. Then

$$
\int_{M}\left\{\operatorname{Ric}\left(\psi^{T}, \psi^{T}\right)-n^{2}(1+F)^{2}+\|B\|^{2}-n\right\} d v=0
$$

Proof. Taking $\xi=\psi^{T}$, we have

$$
\operatorname{div}(F \xi)=g(\nabla F, \xi)+F \operatorname{div} \xi=g(\nabla F, \xi)+n F(1+F)
$$

Consider a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$, then using Lemma 2.2 and equation (2.5) to compute $\operatorname{div}(B \xi)$, we get

$$
\begin{aligned}
\operatorname{div}(B \xi) & =\sum_{i=1}^{n} g\left(\nabla_{e_{i}} B \xi, e_{i}\right)=\sum_{i=1}^{n} g\left((\nabla B)\left(e_{i}, \xi\right)+B \nabla_{e_{i}} \xi, e_{i}\right) \\
& =\sum_{i=1}^{n}\left[g\left((\nabla B)\left(e_{i}, e_{i}\right), \xi\right)+g\left(\nabla_{e_{i}} \xi, B e_{i}\right)\right] \\
& =g(n \nabla F+Q(\xi), \xi)+\sum_{i=1}^{n}\left[g\left(e_{i}, B e_{i}\right)+g\left(B e_{i}, B e_{i}\right)\right] \\
& =n g(\nabla F, \xi)+\operatorname{Ric}(\xi, \xi)+\operatorname{Tr} B+\|B\|^{2} \\
& =n g(\nabla F, \xi)+\operatorname{Ric}(\xi, \xi)+n F+\|B\|^{2}
\end{aligned}
$$

and

$$
g(\nabla F, \xi)=\operatorname{div}(F \xi)-n F^{2}-n F
$$

which gives

$$
n g(\nabla F, \xi)=n \operatorname{div}(F \xi)-n^{2} F^{2}-n^{2} F
$$

Consequently,

$$
\operatorname{div}(B \xi)=n \operatorname{div}(F \xi)-n^{2} F^{2}-n^{2} F+\operatorname{Ric}(\xi, \xi)+n F+\|B\|^{2}
$$

and we have

$$
\operatorname{div}(B \xi-n F \xi)=\operatorname{Ric}(\xi, \xi)-n^{2} F^{2}-n^{2} F+n F+\|B\|^{2}
$$

which after integration gives

$$
\begin{equation*}
\int_{M}\left\{\operatorname{Ric}(\xi, \xi)-n^{2}\left(F^{2}-1\right)+\|B\|^{2}-n\right\} d v=0 \tag{3.5}
\end{equation*}
$$

Also using Lemma 2.1, we have

$$
\int_{M}(1+F)^{2} d v=\int_{M}\left(F^{2}-1\right) d v
$$

which, together with equation (3.5), gives

$$
\int_{M}\left\{\operatorname{Ric}(\xi, \xi)-n^{2}(1+F)^{2}+\|B\|^{2}-n\right\} d v=0
$$

Theorem 3.1. Let $\psi: M \rightarrow R^{n+p}$ be an n-dimensional compact submanifold with the tangential component ψ^{T}, a nonzero conformal vector field with potential function ρ, and λ_{1} be the first nonzero eigenvalue of the Laplacian operator on the submanifold M. If $c=n^{-1} \lambda_{1}$ and the Ricci tensor on M satisfies
(i) $\operatorname{Ric}\left(\nabla \rho+c \psi^{T}, \nabla \rho+c \psi^{T}\right) \geq 0$,
(ii) $\operatorname{Ric}(\nabla \rho, \nabla \rho) \leq(n-1) c\|\nabla \rho\|^{2}$,
then M is isometric to a sphere $S^{n}(c)$.
Proof. Let $\xi=\psi^{T}$ be a conformal vector field with potential function ρ. If we define $f=\frac{1}{2}\|\psi\|^{2}$, then it is easy to show that $\xi=\nabla f$. Thus ξ is a gradient conformal vector field, and consequently, as the 1 -form η dual to ξ being $\eta=d f$ is closed, we get that $\varphi=0$. Then, by Lemma 2.4, we have

$$
\nabla_{X} \xi=\rho X
$$

and using equation (2.4) in the above equation, we have

$$
B X+X=\rho X
$$

which gives $B=(\rho-1) I$ and $\operatorname{div} \xi=n \rho$. However, as $\xi=\nabla f$, we have $\Delta f=n \rho$.
Now,

$$
(\nabla B)(X, Y)=\nabla_{X} B Y-B \nabla_{X} Y=\nabla_{X}(\rho-1) Y-(\rho-1) \nabla_{X} Y=X(\rho) Y
$$

which, together with Lemma 2.2, gives

$$
\begin{equation*}
X(\rho) Y-Y(\rho) X=R(X, Y) \xi \tag{3.6}
\end{equation*}
$$

The above equation immediately gives

$$
\operatorname{Ric}(\xi, X)=\sum_{i=1}^{n} R\left(e_{i}, X ; \xi, e_{i}\right)=g(X, \nabla \rho)-n X(\rho)
$$

and consequently, we have

$$
\begin{equation*}
Q(\xi)=-(n-1) \nabla \rho \tag{3.7}
\end{equation*}
$$

The above equation gives

$$
\operatorname{Ric}(\xi, \xi)=-(n-1) \xi(\rho)=-(n-1)[\operatorname{div}(\rho \xi)-\rho \operatorname{div} \xi]
$$

that is,

$$
\begin{equation*}
\operatorname{Ric}(\xi, \xi)=-(n-1) \operatorname{div}(\rho \xi)+n(n-1) \rho^{2} \tag{3.8}
\end{equation*}
$$

Also, equation (3.7) gives

$$
\begin{equation*}
\operatorname{Ric}(\xi, \nabla \rho)=g(-(n-1) \nabla \rho, \nabla \rho)=-(n-1)\|\nabla \rho\|^{2} \tag{3.9}
\end{equation*}
$$

Let λ_{1} be the first nonzero eigenvalue of the Laplacian operator on M. Then Remark 2.1, together with equation (2.7), gives

$$
\begin{equation*}
\int_{M}\|\nabla \rho\|^{2} d v \geq \lambda_{1} \int_{M} \rho^{2} d v \tag{3.10}
\end{equation*}
$$

with equality holding if and only if $\Delta \rho=-\lambda_{1} \rho$.
Using $c=n^{-1} \lambda_{1}$ and equations (3.8), (3.9) and (3.10), we arrive at

$$
\begin{aligned}
& \int_{M} \operatorname{Ric}(\nabla \rho+c \xi, \nabla \rho+c \xi) d v \\
& \quad=\int_{M}\left\{\operatorname{Ric}(\nabla \rho, \nabla \rho)+n(n-1) c^{2} \rho^{2}-2(n-1) c\|\nabla \rho\|^{2}\right\} d v \\
& \quad \leq \int_{M}\left\{\operatorname{Ric}(\nabla \rho, \nabla \rho)-(n-1) c\|\nabla \rho\|^{2}\right\} d v,
\end{aligned}
$$

Using the conditions in the statement, and the above inequality, we conclude that

$$
\begin{equation*}
\operatorname{Ric}(\nabla \rho+c \xi, \nabla \rho+c \xi)=0 \quad \text { and } \quad \operatorname{Ric}(\nabla \rho, \nabla \rho)-(n-1) c\|\nabla \rho\|^{2}=0 \tag{3.11}
\end{equation*}
$$

Thus we have

$$
\operatorname{Ric}(\nabla \rho, \nabla \rho)+2 c \operatorname{Ric}(\nabla \rho, \xi)+c^{2} \operatorname{Ric}(\xi, \xi)=0
$$

which, together with equation (3.9) and the second equation in (3.11), gives

$$
\begin{equation*}
\operatorname{Ric}(\xi, \xi)=(n-1) c^{-1}\|\nabla \rho\|^{2} \tag{3.12}
\end{equation*}
$$

Now, using $\nabla f=\xi$, that is, $H_{f}(X)=\rho X$ and $\Delta f=n \rho$ in the Bochner Formula (2.8), we arrive at

$$
\int_{M}\left\{\operatorname{Ric}(\xi, \xi)+n \rho^{2}-n^{2} \rho^{2}\right\} d v=0
$$

which, together with equation (3.12), gives

$$
\int_{M}\|\nabla \rho\|^{2} d v=n c \int_{M} \rho^{2} d v=\lambda_{1} \int_{M} \rho^{2} d v
$$

This equality in (3.10) gives $\Delta \rho=-\lambda_{1} \rho$, which, together with $\Delta f=n \rho$, gives $\Delta\left(\rho+\lambda_{1} n^{-1} f\right)=0$, and on compact M, we have $\rho+\lambda_{1} n^{-1} f=$ constant. This last equation, together with $H_{f}(X)=\rho X$, gives $\nabla \rho=-c \nabla f$, that is,

$$
\begin{equation*}
\nabla_{X} \nabla \rho=-c \rho X \tag{3.13}
\end{equation*}
$$

If ρ is a constant, then we have $-c \nabla f=0$, that is, $\xi=0$, which is a contradiction, as ξ is a nonzero conformal vector field. Hence the nonconstant function ρ satisfies the Obata's differential equation (3.13) (cf. [OBA62]), and therefore is isometric to the sphere $S^{n}(c)$.

In the following result, we consider the tangential component ψ^{T} and find conditions under which it becomes a conformal vector field on the submanifold M.

Theorem 3.2. Let $\psi: M \rightarrow R^{n+p}$ be an n-dimensional compact submanifold, with $\lambda=\inf \frac{1}{n-1}$ Ric >0. If $\left\|\psi^{T}\right\|^{2} \geq n \lambda^{-1}(1+F)^{2}$, then ψ^{T} is a conformal vector field on M.

Proof. Taking $\xi=\psi^{T}$ in Lemma 3.2, we get

$$
\int_{M}\left\{\operatorname{Ric}(\xi, \xi)-n^{2}(1+F)^{2}+\|B\|^{2}-n\right\} d v=0
$$

which gives

$$
\int_{M}\left(\operatorname{Ric}(\xi, \xi)-\lambda(n-1)\|\xi\|^{2}\right)+\left(\|B\|^{2}-n F^{2}\right)+\left((n-1)\left(\lambda\|\xi\|^{2}-n(1+F)^{2}\right)\right)=0 .
$$

Using $\operatorname{Ric}(\xi, \xi) \geq(n-1) \lambda\|\xi\|^{2}$, the Schwarz inequality $\|B\|^{2} \geq n F^{2}$ and the condition in the statement $\lambda\|\xi\|^{2} \geq n(1+F)^{2}$ in the above equation, we get the equality $\|B\|^{2}=n F^{2}$, which holds if and only if $B=F I$. Thus

$$
\nabla_{X} \xi=B X+X=F X+X=(1+F) X=\rho X
$$

where $\rho=(1+F)$, that is,

$$
£_{\xi} g=2 \rho g
$$

which proves that $\xi=\psi^{T}$ is a conformal vector field.
In the next result, we consider a conformal vector field on the submanifold M associated with the normal component ψ^{\perp}, and it is interesting to note that in this case we get the criterion for the submanifold to lie on the hypersphere in the Euclidean space, that is, we get a criterion for a spherical submanifold.

Theorem 3.3. Let $\psi: M \rightarrow R^{n+p}$ be an n-dimensional compact submanifold with mean curvature H. Suppose that the smooth function $f=\frac{1}{2}\left\|\psi^{\perp}\right\|^{2}$ gives the conformal vector field ∇f on M, and that $\nabla_{\psi^{T}}^{\perp} H=0$. Then $h\left(\psi^{T}, \psi^{T}\right)=$ 0 if and only if $\psi(M) \subset S^{n+p-1}(c)$ for some constant $c>0$.

Proof. Suppose that $h\left(\psi^{T}, \psi^{T}\right)=0$. Then, for $\xi=\psi^{T}$, we have

$$
\xi(F)=g\left(\nabla_{\xi}^{\perp} H, \psi^{\perp}\right)+g\left(H, \nabla_{\xi}^{\perp} \psi^{\perp}\right)=-g(H, h(\xi, \xi))=0,
$$

that is, $\xi(F)=0$, which, together with Lemma 3.1, gives

$$
\operatorname{Ric}(\xi, \xi)+n \xi(F)+n \rho+n F+\|B\|^{2}=0
$$

Integrating the above equation, we get

$$
\int_{M}\left\{\operatorname{Ric}(\xi, \xi)+n F+\|B\|^{2}\right\} d v=\int_{M}\left\{\operatorname{Ric}(\xi, \xi)+\|B\|^{2}-n\right\} d v=0
$$

where we used Lemma 2.1.
Now, using Lemma 3.2 in the above equation, we get

$$
\int_{M}-n^{2}(1+F)^{2} d v=0
$$

that is, $F=-1$, which, by virtue of Lemma 2.3, gives $\psi(M) \subset S^{n+p-1}(c)$ for some constant $c>0$.

Conversely, if $\psi(M) \subset S^{n+p-1}(c), c>0$, then by Lemma 2.3 $F=-1$ and $\psi^{T}=0$, and this proves $h(\xi, \xi)=0$.

4. Submanifolds with flat normal connection

In this section, we study codimension-two submanifolds in the Euclidean space R^{n+2} with flat normal connection, and find conditions under which the tangential component of the position vector field is a conformal vector field. Let $\psi: M \rightarrow R^{n+2}$ be an immersion of a compact manifold with a flat normal connection and a mean curvature vector field H. We assume that the mean curvature vector field H is nowhere zero, and choose a local orthonormal frame $\left\{N_{1}, N_{2}\right\}$ of normals such that $H=\alpha N_{1}$, where $\alpha=\|H\|$. Then, using the definition of the smooth function $F=\left\langle\psi^{\perp}, H\right\rangle$, in this case we have

$$
\begin{equation*}
\psi^{\perp}=\frac{F}{\alpha} N_{1}+\mu N_{2}, \quad \mu=\left\langle N_{2}, \psi^{\perp}\right\rangle \tag{4.1}
\end{equation*}
$$

Define a smooth 1-form ω by $\omega(X)=g\left(\nabla \frac{\perp}{X} N_{1}, N_{2}\right), X \in \mathfrak{X}(M)$, and let v be the smooth vector field on M dual to ω.

Lemma 4.1. Let $\psi: M \rightarrow R^{n+2}$ be an immersion of a smooth manifold with a local orthonormal frame $\left\{N_{1}, N_{2}\right\}$ of normals such that $H=\alpha N_{1}$. Then, the normal connection on M is flat if and only if ω is closed.

Proof. Using $\omega(X)=g\left(\nabla \frac{\perp}{X} N_{1}, N_{2}\right)$, we have $\nabla \frac{1}{X} N_{1}=\omega(X) N_{2}$ and that $\nabla \frac{1}{X} N_{2}=-\omega(X) N_{1}$. We compute $R^{\perp}(X, Y) N_{1}$ to get

$$
R^{\perp}(X, Y) N_{1}=X(\omega(Y)) N_{2}-Y(\omega(X)) N_{2}-\omega([X, Y]) N_{2}=d \omega(X, Y) N_{2}
$$

and similarly we have

$$
R^{\perp}(X, Y) N_{2}=-d \omega(X, Y) N_{1}, \quad X, Y \in \mathfrak{X}(M),
$$

which proves the normal connection is flat if an only if $d \omega=0$, that is, ω is closed.

Let M be a submanifold of R^{n+2} with flat normal connection. Then as the smooth 1 -form ω, which is dual to smooth vector field v, is closed using equation (2.6), we have a symmetric tensor field C that is given by $\nabla_{X} v=C X$, for $X \in \mathfrak{X}(M)$.

Lemma 4.2. Let $\psi: M \rightarrow R^{n+2}$ be an immersion of a smooth manifold with a local orthonormal frame $\left\{N_{1}, N_{2}\right\}$ of normals such that $H=\alpha N_{1}$ and shape operators $A_{1}=A_{N_{1}}$ and $A_{2}=A_{N_{2}}$. Then
(i) $\sum_{i=1}^{n}\left(\nabla A_{1}\right)\left(e_{i}, e_{i}\right)=n \nabla \alpha+A_{2} v$,
(ii) $\sum_{i=1}^{n}\left(\nabla A_{2}\right)\left(e_{i}, e_{i}\right)=n \alpha v-A_{1} v$,
where $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local orthonormal frame on M.
Proof. Using the expression

$$
(D h)(X, Y, Z)=\nabla_{X}^{\frac{1}{X}} h(Y, Z)=h\left(\nabla_{X} Y, Z\right)-h\left(\nabla_{X} Z, Y\right),
$$

and the Codazzi equation of the submanifold

$$
(D h)(X, Y, Z)=(D h)(Y, Z, X), \quad X, Y, Z \in \mathfrak{X}(M),
$$

we get

$$
\begin{equation*}
\left(\nabla A_{1}\right)(X, Y)-\left(\nabla A_{1}\right)(Y, X)=A_{\nabla_{\bar{X}} N_{1}} Y-A_{\nabla_{\frac{1}{Y} N_{1}} X,} X, \tag{4.2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left(\nabla A_{2}\right)(X, Y)-\left(\nabla A_{2}\right)(Y, X)=A_{\nabla_{\bar{x}} N_{2}} Y-A_{\nabla_{\frac{1}{Y}} N_{2}} X . \tag{4.3}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\operatorname{Tr} A_{1}=n \alpha \quad \text { and } \quad \operatorname{Tr} A_{2}=0, \tag{4.4}
\end{equation*}
$$

and consequently, we get

$$
\sum_{i=1}^{n} g\left(\left(\nabla A_{1}\right)\left(X, e_{i}\right), e_{i}\right)=\sum_{i=1}^{n} g\left(\nabla_{X} A_{1} e_{i}, e_{i}\right)-g\left(A_{1} \nabla_{X} e_{i}, e_{i}\right)=n g(X, \nabla \alpha) .
$$

Using equations (4.2) and (4.3) in the above equation, we arrive at the desired result in (i).

Similarly, using equations (4.3) and (4.4), we get

$$
\sum_{i=1}^{n} g\left(\left(\nabla A_{2}\right)\left(X, e_{i}\right), e_{i}\right)=\sum_{i=1}^{n} g\left(\nabla_{X} A_{2} e_{i}, e_{i}\right)-g\left(A_{2} \nabla_{X} e_{i}, e_{i}\right)=X\left(\operatorname{Tr} A_{2}\right)=0,
$$

and arrive at the desired result in (ii).
In the following main result of this section, we find necessary conditions for the vector field $\xi=\psi^{T}$ on the submanifold M of the Euclidean space R^{n+2} with flat normal connection to be a conformal vector field. Let $\psi: M \rightarrow R^{n+2}$ be a compact submanifold with flat normal connection, and v be the vector field dual to the closed 1 -form ω given in Lemma 4.1, and $h=\operatorname{Tr} C, C$ being the symmetric tensor field given by $C X=\nabla_{X} v$.

Theorem 4.1. Let $\psi: M \rightarrow R^{n+2}$ be an immersion of a compact manifold with a flat normal connection, and $\left\{N_{1}, N_{2}\right\}$ a local orthonormal frame of normals such that $H=\alpha N_{1}, H(p) \neq 0, p \in M$. If there is a constant c and the following conditions hold:
(i) $\operatorname{Ric}(v, v) \geq \frac{n-1}{n} h^{2}$,
(ii) $\operatorname{Ric}(\xi-c v, \xi-c v) \geq 0$,
(iii) $|c h-n F| \leq n$,
where $\xi=\psi^{T}$, then ξ is a conformal vector field.
Proof. Using the definition of the curvature tensor field and

$$
\begin{equation*}
\nabla_{X} v=C X \tag{4.5}
\end{equation*}
$$

we get

$$
\begin{equation*}
R(X, Y) v=(\nabla C)(X, Y)-(\nabla C)(Y, X) \tag{4.6}
\end{equation*}
$$

Since $h=\operatorname{Tr} C$, the above equation gives

$$
\operatorname{Ric}(X . v)=g\left(\sum_{i=1}^{n}(\nabla C)\left(e_{i}, e_{i}\right)-\nabla h, X\right)
$$

that is,

$$
\begin{equation*}
Q(v)=\sum_{i=1}^{n}(\nabla C)\left(e_{i}, e_{i}\right)-\nabla h \tag{4.7}
\end{equation*}
$$

Now, using equation (4.7) in computing $\operatorname{div} C v$, we get

$$
\begin{equation*}
\operatorname{div} C v=\operatorname{Ric}(v, v)+v(h)+\|C\|^{2} . \tag{4.8}
\end{equation*}
$$

Also, equation (4.5) gives $\operatorname{div} v=h$, and thus we have

$$
\operatorname{div} h v=v(h)+h^{2},
$$

which on integration gives

$$
\int_{M} v(h) d v=-\int_{M} h^{2} d v
$$

Now, integrating equation (4.8) and using the above equation, we get

$$
\int_{M}\left\{\operatorname{Ric}(v, v)+\|C\|^{2}-h^{2}\right\} d v=0
$$

that is,

$$
\int_{M}\left\{\left(\operatorname{Ric}(v, v)-\frac{n-1}{n} h^{2}\right)+\left(\|C\|^{2}-\frac{1}{n} h^{2}\right)\right\} d v=0
$$

Thus the condition (i) in the statement, together with Schwarz inequality $\|C\|^{2} \geq \frac{1}{n} h^{2}$, gives

$$
\begin{equation*}
\operatorname{Ric}(v, v)=\frac{n-1}{n} h^{2} \quad \text { and } \quad\|C\|^{2}=\frac{1}{n} h^{2} . \tag{4.9}
\end{equation*}
$$

The second equation in (4.9) gives

$$
\begin{equation*}
C=\frac{h}{n} I \quad \text { and } \quad \nabla_{X} v=\frac{h}{n} X \tag{4.10}
\end{equation*}
$$

Now, using equation (4.7), we get

$$
\operatorname{Ric}(v, v)=-\left(\frac{n-1}{n}\right) v(h)
$$

which, together with equation (4.9), gives $v(h)=-h^{2}$. Also, the first equation in (4.10) and $\operatorname{Tr} B=F$ give $\operatorname{Tr} C B=h F$.

Using equation (4.1) in (2.4), we get

$$
\begin{equation*}
X\left(\frac{F}{\alpha}\right) N_{1}+\frac{F}{\alpha} \nabla \frac{\perp}{X} N_{1}+X(\mu) N_{2}+\mu \nabla \frac{\perp}{X} N_{2}=-h(X, \xi) \tag{4.11}
\end{equation*}
$$

which, taking inner product with N_{1}, gives

$$
\begin{equation*}
\nabla\left(\frac{F}{\alpha}\right)=\mu v-A_{1} \xi \tag{4.12}
\end{equation*}
$$

similarly, taking inner product with N_{2} gives

$$
\begin{equation*}
\nabla \mu=-A_{2} \xi-\frac{F}{\alpha} v \tag{4.13}
\end{equation*}
$$

Now, we compute the divergence of the vector field $B v$,

$$
\operatorname{div} B v=\sum_{i=1}^{n} g\left(\nabla_{e_{i}} B v, e_{i}\right)=\sum_{i=1}^{n} g\left(\nabla_{e_{i}}\left(\frac{F}{\alpha} A_{1} v+\mu A_{2} v\right), e_{i}\right)
$$

which, using equations (4.4), (4.12), (4.13) and Lemma 4.1, gives

$$
\begin{equation*}
\operatorname{div} B v=-g\left(A_{1}^{2} v+A_{2}^{2} v, \xi\right)+n \frac{F}{\alpha} v(\alpha)+n \alpha \mu\|v\|^{2}+F h \tag{4.14}
\end{equation*}
$$

On using equation (4.12), we get

$$
\begin{equation*}
v(F)=\frac{F}{\alpha} v(\alpha)+\alpha \mu\|v\|^{2}-\alpha g\left(A_{1} v, \xi\right) \tag{4.15}
\end{equation*}
$$

and

$$
\operatorname{div} F v=F \operatorname{div} v+v(F)=h F+\frac{F}{\alpha} v(\alpha)+\alpha \mu\|v\|^{2}-\alpha g\left(A_{1} v, \xi\right)
$$

and consequently, that

$$
\begin{equation*}
n \operatorname{div} F v+n \alpha g\left(A_{1} v, \xi\right)=n \frac{F}{\alpha} v(\alpha)+n \alpha \mu\|v\|^{2}+n h F \tag{4.16}
\end{equation*}
$$

Now, using the expression for the Ricci tensor of submanifold, we have

$$
\operatorname{Ric}(X, v)=n g(h(v, X), H)-\sum_{i=1}^{n} g\left(h\left(X, e_{i}\right), h\left(v, e_{i}\right)\right),
$$

which gives

$$
\begin{equation*}
Q(v)=n \alpha A_{1} v-A_{1}^{2} v-A_{2}^{2} v \tag{4.17}
\end{equation*}
$$

Using equations (4.16) and (4.17) in equation (4.14), we get

$$
\operatorname{div} B v=\operatorname{Ric}(\xi, v)+n \operatorname{div} F v-(n-1) h F
$$

and integrating the above equation we have

$$
\begin{equation*}
\int_{M}\{\operatorname{Ric}(\xi, v)-(n-1) h F\} d v=0 . \tag{4.18}
\end{equation*}
$$

Finally, using equations (4.9) and (4.18) and Lemma 3.2, we get
$\int_{M} \operatorname{Ric}(\xi-c v, \xi-c v) d v=\int_{M}\left\{\left(n F^{2}-\|B\|^{2}\right)+\frac{n-1}{n}\left[(c h-n F)^{2}-n^{2}\right]\right\} d v$, which, together with the conditions in the statement and the Schwarz inequality $\|B\|^{2} \geq n F^{2}$, gives

$$
\|B\|^{2}=n F^{2}, \quad \xi=c v \quad \text { and } \quad|c h-n F|=n
$$

The second equation, together with equation (4.10), gives

$$
\nabla_{X} \xi=\frac{c}{n} h X, \quad X \in \mathfrak{X}(M)
$$

This proves that

$$
\left(£_{\xi} g\right)(X, Y)=2 \frac{c}{n} h g(X, Y)
$$

that is, $\xi=\psi^{T}$ is a conformal vector field.

References

[ALO07] H. Alodan and S. Deshmukh, Spherical submanifolds in a Euclidean space, Monatsh. Math. 152 (2007), 1-11.
[ALO02] H. Alodan and S. Deshmukh, Spherical submanifolds of a Euclidean space, Q. J. Math. 53 (2002), 249-256.
[ALOD02] H. Alodan and S. Deshmukh, Submanifolds with parallel mean curvature vector in a real space form, Int. Math. J. 2 (2002), 85-100.
[DES12] S. Deshmukh, Conformal vector fields and Eigenvectors of Laplacian operator, Math. Phys. Anal. Geom. 15 (2012), 163-172.
[DES08] S. Deshmukh and F. Al-Solamy, Conformal gradient vector fields on a compact Riemannian manifold, Colloq. Math. 112 (2008), 157-161.
[DES10] S. Deshmukh, Characterizing spheres by conformal vector fields, Ann. Univ. Ferrara Sez. VII Sci. Mat. 56 (2010), 231-236.
[CHE83] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984.
[OBA62] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340.

HANAN ALOHALI
DEPARTMENT OF MATHEMATICS
COLLEGE OF SCIENCE
KING SAUD UNIVERSITY
P. O. BOX-2455

RIYADH-11451
SAUDI ARABIA
E-mail: halohali@ksu.edu.sa

HAILA ALODAN
DEPARTMENT OF MATHEMATICS
COLLEGE OF SCIENCE
KING SAUD UNIVERSITY
P. O. BOX-2455

RIYADH-11451
SAUDI ARABIA
E-mail: halodan1@ksu.edu.sa
SHARIEF DESHMUKH
DEPARTMENT OF MATHEMATICS
COLLEGE OF SCIENCE
KING SAUD UNIVERSITY
P. O. BOX-2455

RIYADH-11451
SAUDI ARABIA
E-mail: shariefd@ksu.edu.sa

[^0]: Mathematics Subject Classification: 53C20, 53A50.
 Key words and phrases: Ricci curvature, conformal gradient vector field, flat normal vector field, submanifolds.
 This work is supported by the Deanship of Scientific Research of King Saud University, College of Science, Research Center.

