King Saud University	Final Exam M.203	Summer semester
Department Of Mathematics.	Differential and integral	We. 14/11/1437H.
College of Sciences.	Calculus.	Time: 3 hours.

<u>Question 1.</u>[2+2+4]

a) Determine whether if the following of series are convergent or divergent.

$$\sum_{n=1}^{\infty} (-1)^n \frac{3^n}{n^2} , \quad \sum_{n=1}^{\infty} \frac{\sin(3n) + 1}{2^n}$$

b) Find only the first four terms of the Taylor series of the function

$$f(x) = \ln(x+3)$$
, $c = -1$

Question 2. [4+5]

a) Find the interval and radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n \, 2^n}.$$

b) Find the volume of the solid bounded by the cone $z = \sqrt{x^2 + y^2}$ and the paraboloid $z = 2 - x^2 - y^2$.

Question 3. [5+5]

a) Evaluate the following integral : $\iiint_Q z^2 dV$, where Q is the part of the Q sphere $x^2 + y^2 + z^2 \le 1$ that lies in the first octant.

b) Show that the line integral is independent of path, and find its value.

$$\int_{(\pi,-1)}^{(\frac{\pi}{2},2)} (-2y^3 \sin x) dx + (6y^2 \cos x + 5) dy$$

Question 4. [5]

Let Q be the region bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0, and z = 3. Let S be the surface of Q. For the vector field

 $\vec{F}(x, y, z) = x^{3}\vec{i} + y^{3}\vec{j} + z^{3}\vec{k}$, use the Divergence Theorem to evaluate the integral $\iint_{S} \vec{F} \cdot \vec{n} \, ds$.

Question 5. [4+4]

Let the force \vec{F} defined by $\vec{F}(x, y, z) = -4y\vec{i} + 2z\vec{j} + 3x\vec{k}$ and let S be the portion of the paraboloid $z = 10 - x^2 - y^2$ above the plane z = 1. Verify Stokes' Theorem.