King Saud University Department Of Mathematics. College of Sciences.	Final Exam M.203 Differential and integral Calculus.	Summer semester We. 14/11/1437H. Time: 3 hours.

Question 1. $[2+2+4]$

a) Determine whether if the following of series are convergent or divergent.

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n}}{n^{2}}, \sum_{n=1}^{\infty} \frac{\sin (3 n)+1}{2^{n}}
$$

b) Find only the first four terms of the Taylor series of the function

$$
f(x)=\ln (x+3) \quad, c=-1
$$

Question 2. $[4+5]$
a) Find the interval and radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(x+3)^{n}}{n 2^{n}}
$$

b) Find the volume of the solid bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the paraboloid $z=2-x^{2}-y^{2}$.

Question 3. $[5+5]$
a) Evaluate the following integral: $\iiint_{Q} z^{2} d V$, where Q is the part of the sphere $x^{2}+y^{2}+z^{2} \leq 1$ that lies in the first octant.
b) Show that the line integral is independent of path, and find its value.

$$
\int_{(\pi,-1)}^{\left(\frac{\pi}{2}, 2\right)}\left(-2 y^{3} \sin x\right) d x+\left(6 y^{2} \cos x+5\right) d y
$$

Question 4. [5]

Let Q be the region bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $z=0$, and $z=3$. Let S be the surface of Q.For the vector field $\vec{F}(x, y, z)=x^{3} \vec{i}+y^{3} \vec{j}+z^{3} \vec{k}$, use the Divergence Theorem to evaluate the integral $\iint_{S} \vec{F} \cdot \vec{n} d s$.

Question 5. $[4+4]$

Let the force \vec{F} defined by $\vec{F}(x, y, z)=-4 y \vec{i}+2 z \vec{j}+3 x \vec{k}$ and let S be the portion of the paraboloid $z=10-x^{2}-y^{2}$ above the plane $z=1$.Verify Stokes' Theorem.

