KING SAUD UNIVERSITY
 College of Sciences
 Department of Mathematics

Final examination/ Summer semester / 1427/1428

Math 203, Time: 3 hours

- Question 1. [Marks: $3+4+5$]
a) Check the convergence or the divergence of the series : $\sum_{n=0}^{\infty}\left[\frac{1}{2^{n}}+\left(-\frac{3}{4}\right)^{n}\right]$. Find the sum if it is convergent.
b) Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\ln n}$ is absolutely convergent, conditionally convergent or divergent.
c) Find the interval of convergence and the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 3^{n}}(x-1)^{n}$.
- Question 2. [Marks: $4+4+4$]
a) Find the Maclaurin series of the function $\operatorname{Sin} x$ and use its first three non-zero terms to approximate the improper integral $\int_{-1}^{1} \frac{\operatorname{Sinx}}{x} d x$.
b) Evaluate the integral $\int_{1}^{e} \int_{\frac{1}{e}}^{\frac{1}{y}} \operatorname{Cos}(x-\ln x) d x d y$.
c) Find the surface area of the solid bounded above by the surface $z=$ $9-x^{2}-y^{2}$ and below by the xy-plane.
- Question 3. [Marks: $4+4+4$]
a) A solid is bounded by the paraboloid $z=x^{2}+y^{2}$, the cylinder $x^{2}+y^{2}=4$ and the xy-plane. Find its centroid.
b) Using spherical coordinates, evaluate the integral $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} z^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x$
c) Show that the following line integral is independent of path, and find its value:

$$
\int_{(-4,3)}^{(5,2)}\left(y^{2}+2 x y\right) d x+\left(x^{2}+2 x y\right) d y . \quad \quad \text { Please see page } 2 \hookrightarrow
$$

- Question 4. [Marks: 4+5+5]
a) Use Green's theorem to evaluate the line integral $\oint_{C} y^{3} d x+\left(x^{3}+3 x y^{2}\right) d y$, where C is the path from $(0,0)$ to $(1,1)$ along the graph of $y=x^{3}$ and from $(1,1)$ to $(0,0)$ along the graph of $y=x$.
b) Use the divergence theorem to find $\iint_{S} \vec{F} \cdot \vec{n} d s$ if $\vec{F}(x, y, z)=$ $\left(x^{2}+\operatorname{Sinz}\right) \vec{i}+(x y+\operatorname{Cosz}) \vec{j}+e^{y} \vec{k}, S$ is the surface of the region bounded by the cylinder $x^{2}+y^{2}=4$, the plane $x+z=6$ and the xy-plane.
c) Use Stokes's theorem to evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=2 z \vec{i}+x \vec{j}+y^{2} \vec{k}$ and S is the surface of the paraboloid $z=4-x^{2}-y^{2}$ and C is the trace of S in the xy-plane.

