King Saud University, Mathematics Department
Math 204. Time: 3H, Full Marks: 40, 17/08/2016 Final Exam (Summer Session)

Question 1. $[4,4]$ a) Solve the initial value problem

$$
\left\{\begin{array}{c}
y^{\prime}=\cos ^{2} y \cdot \cos ^{2} x \\
y(0)=\frac{\pi}{4}
\end{array}\right.
$$

b) Find the general solution of the differential equation

$$
[\sin (x+y)+y \cos (x+y)+x+y] y^{\prime}+(y \cos (x+y)+y+x)=0
$$

Question 2. $[4,5]$ a) Obtain the solution of the following initial value problem

$$
y^{\prime}=\frac{x+3 y^{2}}{2 y}, \quad y(0)=1
$$

b) Write down the form of the particular solution of the differential equation

$$
y^{\prime \prime \prime}+y^{\prime}=6-2 \sin x+e^{-x} \cos 2 x
$$

Question 3. $[4,4]$ a) Solve the differential equation

$$
y^{\prime \prime}-y=5+\cosh x
$$

b) Find the genral solution of the differential equation

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=\frac{1}{x+1}, \quad x>0
$$

Question 4. [5] Solve the system of differential equations

$$
\left\{\begin{array}{c}
\frac{d x}{d t}+2 y+x=0 \\
2 \frac{d x}{d t}+\frac{d y}{d t}+y=0
\end{array}\right.
$$

Question 5. $[5,5]$ a) Let $f(x)=1-\frac{2 x}{\pi}$, for all $x \in[0, \pi]$, such that $f(x+2 \pi)=f(x)$. Sketch the graph of f on $[-2 \pi, 2 \pi]$ and find its Fourier series. Deduce that

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}=\frac{\pi^{2}}{8}
$$

b) Consider the function

$$
g(x)=\left\{\begin{array}{cc}
0, & x \leq 0 \\
x, & 0<x \leq 1 \\
0, & x>1
\end{array}\right.
$$

Skech the graph of f and find its Fourier integral. Deduce that

$$
\int_{0}^{\infty} \frac{1-\cos \lambda}{\lambda^{2}} d \lambda=\frac{\pi}{2}
$$

(Hint take $x=1$).

