M = 204 DEPLARTMENT (F MATHEMATICS FULL MARKS:50 KING SAUD UNIVERSITY T.ME: 90 min (TIRST MHD-TERM SEMESTER I, summer 1435)

Question:1. Find the general solutions to the differential equations

(i)
$$x \frac{dy}{dx} = 1 + y^{2}$$

(ii) $x \frac{dy}{dx} = 2x^{3} + y$
(iii) $x^{2} \frac{dy}{dx} = x^{2} + xy + y^{2}$
(iii) $x^{2} \frac{dy}{dx} = x^{2} + xy + y^{2}$

Question:2. Verify that $\mu(x) = x$ is an integrating factor for differential equation $(3y^2 - 4x^2 + 2)dx + 3xydy = 0$, hence solve the differential equations. [10]

Question:3. Write the differential equation in the form of Bernoulli's equation, hence solve it $y(6y^2 - x - 1)dx + 2xdy = 0$, x > 0 and $y \ne 0$. [10]

Question:4. Find the orthogonal trajectory of the family of curves $y = 4x + 1 + c_1 e^x$ passing through point (0,0) [10]

Question: 5. A thermometer is removed from a room where the air temperature is 80° C and is taken outside, where the temperature is 20° C, after 2 minutes the thermometer reads 60° C. What is the reading of the thermometer after three minutes? How long it will take for the thermometer to reach 25° C? [Formulate the differential equation and then solve]. [8]