1st Semester 1436/1437

**Final Exam** 

**King Saud University** 

(without calculators)

Time allowed: 3 hours

**College of Science** 

Monday 24-3-1437

240 Math

Math. Department

Q1: (a) Find the inverse of  $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$ . (4 marks)

(b) Use Cramer's rule to solve the following linear system:

$$x_1 + 2x_3 = 6$$

$$-3x_1 + 4x_2 + 6x_3 = 30$$

$$-x_1 - 2x_2 + 3x_3 = 8$$

(4 marks)

Q2: (a) Find a <u>subset</u> of the vectors  $v_1=(1,-2,0,3)$ ,  $v_2=(2,-5,-3,6)$ ,  $v_3=(0,1,3,0)$ ,  $v_4=(2,-1,4,-7)$  and  $v_5=(5,-8,1,2)$  that forms a basis for the space <u>spanned</u> by these vectors. (4 marks)

(b) Find bases for the eigenspaces of the matrix  $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$  (4 marks)

Q3: (a) Let  $\mathbb{R}^4$  have the Euclidean inner product. Find the cosine of the angle  $\theta$  between the vectors  $\mathbf{u}$ = (4,3,1,-2) and  $\mathbf{v}$ =(-2,1,2,3).

Moreover, if P<sub>2</sub> has the inner product  $\langle p,q \rangle = \int_{-1}^{1} p(x)q(x)dx$ , then show that the vectors x and x<sup>2</sup> are orthogonal. (4 marks).

(b) Assume that the vector space  $\mathbb{R}^3$  has the Euclidean inner product. Apply the Gram-Schmidt process to transform the basis vectors (1,1,1), (0,1,1), (0,0,1) into an orthonormal basis. (4 marks)

Q4: (a) Consider the basis S={v<sub>1</sub>=(1,1,1),v<sub>2</sub>=(1,1,0),v<sub>3</sub>=(1,0,0)} for  $\mathbb{R}^3$ . Let  $T:\mathbb{R}^3\to\mathbb{R}^2$  be the linear transformation for which T(v<sub>1</sub>)=(1,0), T(v<sub>2</sub>)=(2,-1) and T(v<sub>3</sub>)=(4,3). Find a formula for T(x<sub>1</sub>,x<sub>2</sub>,x<sub>3</sub>), and then use that for mula to compute T(2,-3,5). (4 marks)

(b) Let  $T: \mathbb{R}^3 \to \mathbb{R}^3$  be the linear operator defined by the formula:

$$T(x_1, x_2, x_3) = (3x_1 + x_2, -2x_1 - 4x_2 + 3x_3, 5x_1 + 4x_2 - 2x_3)$$

Determine whether T is one-to-one; if so, find  $T^{-1}(x_1, x_2, x_3)$ . (4 marks)

Q5: Prove the following statements:

(a) If  ${\bf u}$  and  ${\bf v}$  are orthogonal vectors in an inner product space, then

$$||u+v||^2 = ||u||^2 + ||v||^2$$
. (2 marks)

- (b) If  $T:V\to W$  is a linear transformation, then the range of T is a subspace of W. (2 marks)
- (c) If  $T:V\to W$  is a linear transformation, then T is one-to-one if and only if  $\ker(T)=\{0\}$ . (2 marks)
- (d) If  $T_1:U\to V$  and  $T_2:V\to W$  are two linear transformations, then
- $(T_2 \circ T_1) : U \to W$  is also a linear transformation. (2 marks)