Q1: Suppose the reduced row echelon form (R. R. E. F.) of a matrix A is $R=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]:$
(a) Find The solution set of the system $A x=0$.
(b) If the columns of A are $v_{1}, v_{2}, v_{3}, v_{4}$. Find a basis of the column space of A from the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.

Q2: Let V be a subspace of the vector space \mathbb{R}^{3} spanned by the set S, where $S=\left\{v_{1}=(3,-1,0), v_{2}=(2,-3,4), v_{3}=(-1,5,1), v_{4}=(1,2,3), v_{5}=(7,0,7)\right\}$. Find a subset of S that forms a basis of V.
(4 marks)
Q3: Find a basis for each eigenspace of the matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$. Moreover, find the algebraic multiplicity and the geometric multiplicity of each eigenvalue of A and deduce if the matrix A is diagonalizabie ur not.
(5 marks)

Q4: Let \mathbb{R}^{4} be the Euclidean inner product space. Find the distance between the vectore $:(2,2,3,0)$ and $\because(1,1,2,-1)$. Alsu, show that these two votion are not orthogonal.
(4 marks)

Q5: Assume that the vector space \mathbb{R}^{3} has the Euclidean inner product. Apply the Gram-Schmidt process to transform the basis vectors $(1,0,1),(0,1,2)$, $(0,3,0)$ into an orthonormal basis.

Q6: Let $c \in \mathbb{R}-\{0\}$ and V be an inner product space, and let $T: V \rightarrow V$ be the map defined by $T(v)=c v$ for all v in V. Show that:
(a) T is a linear operator.
(b) If $v_{o} \in \operatorname{ker}(T)$, then $v_{o}=0$.

Q7: Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear operator defined by the formula: $T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1 g}-2 x_{1}-4 x_{2 g}, 3 x_{1}+4 x_{2}-2 x_{3}\right)$. Find $[T]_{\mathrm{S}, \mathrm{B}}$ where S is the standard basis of \mathbb{R}^{3} and $B=\left\{v_{1}=(1,1,1), v_{2}=(1,1,0), v_{3}=(1,0,0)\right\}$ is another basis of \mathbb{R}^{3} 。
(4 marks)

Q8: Solve the following statements:
(a) If $T: V \rightarrow W$ is a linear transformation, then prove that the range of T $(\mathrm{R}(\mathrm{T}))$ is a subspace of W.
(2 marks)
(b) If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are two linear transformations, then prove that $\left(T_{2} \circ T_{1}\right): U \rightarrow W$ is also a linear transformation.
(c) If u and v are orthogonal vectors in an inner product space, then prove that: $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$ (2 marks)
(d) Define a product on the vector space M_{22} as follows:
for all $A, B \in M_{22}:\langle A, B\rangle=|A B|$
Show that this product is not an inner product on M_{22}.

