FIRST SEMESTER FINAL EXAMINATION, 1439-1440(DEC. 2018)
 DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE KING SAUD UNIVERSITY
 MATH: 240 FULL MARK: 40 TIME: 3 HOURS

[N. B.: All questions carry equal mark $5 \times 8=40$]

1. (a) Determine whether $\mathbf{v}_{1}=(1,2,6), \mathbf{v}_{\mathbf{2}}=(3,4,1), \mathbf{v}_{\mathbf{3}}=(4,3,1)$, and $\mathbf{v}_{\mathbf{4}}=$ $(3,3,1)$ span the vector space \Re^{3}.
(b) Check whether the set of vectors $\mathbf{v}_{1}=(3,8,7,-3), \mathbf{v}_{\mathbf{2}}=(1,5,3,-1), \mathbf{v}_{\mathbf{3}}=$ $(2,-1,2,6)$, and $\mathbf{v}_{4}=(1,4,0,3)$ in \Re^{4} is linearly dependent or independent.
2. Find a subset of the vectors $\mathbf{v}_{1}=(1,-1,5,2), \mathbf{v}_{\mathbf{2}}=(-2,3,1,0), \mathbf{v}_{\mathbf{3}}=(4,-5,9,4)$, $\mathbf{v}_{4}=(0, \sqrt{4,2 ;}-3)$ and $\mathbf{v}_{5}=(-7,18,2,-8)$ that forms a basis for the space spanned by these vectors.
3. Find a basis for the orthogonal complement of the subspace of \Re^{n} spamed by the vectors $\mathbf{v}_{\mathbf{1}}=(1,4,5,2), \mathbf{v}_{\mathbf{2}}=(2,1,3,0), \mathbf{v}_{\mathbf{3}}=(-1,3,2,2)$.
4. Assume that the vector space \Re^{3} has the Euclidean inner product. Apply the Gram-Schmidt process to transform the basis vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$, where $\mathbf{u}_{1}=$ $(1,0,0), \mathbf{u}_{\mathbf{2}}=(3,7,-2), \mathbf{u}_{\mathbf{3}}=(0,4,1)$ into an orthogonal basis $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$.
5. Find the characteristic equation of the following matrix and hence find eigenvalues of the matrix

$$
A=\left[\begin{array}{ccc}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

6. Find a matrix P that diagonalizes A, and determine $P^{-1} A P$.

$$
A=\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

7. Let T be multiplication by the matrix A, where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 3 \\
5 & -4 & -4 \\
7 & -6 & 2
\end{array}\right]
$$

Find the rank and nullity of T.
8. Let $T: \Re^{3} \longrightarrow \Re^{3}$ be defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}, x_{2}-x_{1}, x_{1}-x_{3}\right)$.

Find the matrix for T with respect to the basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where $\mathbf{v}_{1}=$ $(1,0,1), \mathbf{v}_{2}=(0,1,1)$ and $\mathbf{v}_{3}=(1,1,0)$. Hence verify that $[T]_{B}[\mathbf{x}]_{B}=[T(\mathbf{x})]_{B}$, for every vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ in \Re^{3}.

