Q1: (a) Let V be any vector space which has two operations are defined: addition and scalar multiplication. State the 10 axioms that should be satisfied by all scalars and all objects in V. (5 marks)
(b) Prove that the solution set of a homogeneous linear system $A x=0$ in n unknowns is a subspace of \mathbb{R}^{n}. (2 marks)

Q2: (a) Use the wronskian to show that $1, x, x^{2}$ are linearly independent. (2 marks)
(b) show that the vectors $(1,2,1),(2,2,2),(3,4,0)$ form a basis for \mathbb{R}^{3}. (3 marks)

Q3: (a) Let $B=\{(1,3),(0,1)\}$ and $B^{\prime}=\{(1,1),(2,1)\}$ be two basis of \mathbb{R}^{2}. Find the transition matrix from B^{\prime} to B. (3 marks).
(b) Find a basis for the column space of the matrix:

$$
A=\left[\begin{array}{cccc}
3 & 5 & -2 & 6 \\
1 & 2 & -1 & 1 \\
2 & 4 & 1 & 5 \\
5 & 9 & -4 & 8
\end{array}\right]
$$

and deduce $\operatorname{dim}($ null(A)) without solving any linear system. (3 marks)

Q4: (a) Show that the matrix operator T from \mathbb{R}^{2} to itself defined by the equations:
$w_{1}=2 x_{1}+x_{2}$
$w_{2}=3 x_{1}+4 x_{2}$
is 1-1 and find T^{-1}. (3 marks)
(b) Show that $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right]$ is diagonalizable and find a matrix P that diagonalizes A. (4 marks)

